# Ingeteam

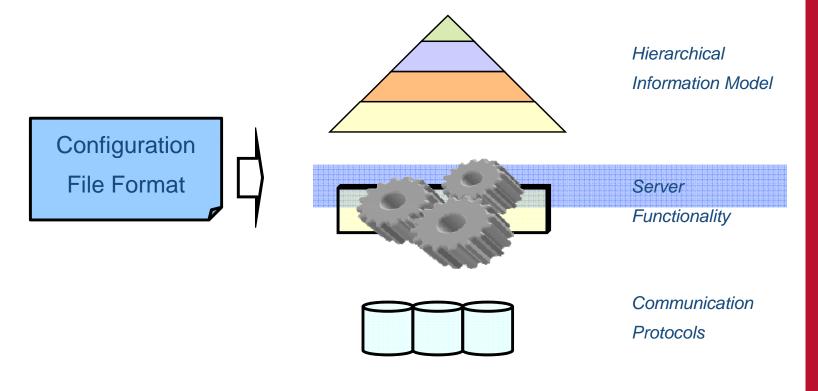
Ingeteam

Transmission & Distribution, S.A.

## IEC 61850 : COMMUNICATION NETWORKS AND SYSTEMS IN SUBSTATIONS

**RODOLFO PEREDA :: Ingeteam T&D IEC 61850 Project Manager** 

- Introduction
- Content of the standard
- □ Architecture
- Sections 7 and 8 of the standard
- Key concepts
- 🗌 Data model
- SCL language
- Certification




## Introduction

IEC 61850: "Communication networks and systems in substations".

Common misunderstanding: "IEC 61850 is not only a communication protocol".

□IEC 61850 specifies...



IEC 61850 standard looks for "Interoperability": possibility of communication with different vendors using the same approach.

□ An IEC 61850 device or software acting as a client shall be able to communicate with servers from different vendors.

### UCA :

- Utility Communications Architecture
- Defined by the EPRI (Electric Power Research Institute) coordinating the work of a set of Northamerican enterprises.

### **IEC 61850 :**

- Defined by IEC (International Electrotechnical Commission) : TC 57 -> WG10, WG11, WG12
- It was based on the UCA experience
- It has integrated the UCA group (compatibility with UCA 2.0)

- In 1988, the UCA project was launched with the aim of fulfilling the requirements of the electrical industry
- □ This standard was very open, so it was not adopted by the industry in a generalized way.
- □ In 1997, version 2 was launched.
- Version 2.0 has a basic protocol family, as well as standardized object models for substations, self-described and independent from the provider.
- □ All the data acquisition and the applications control is carried out through MMS (Manufacturing Message Specification)
- □ The MMS/UCA standard is based on well-known open standards.
- UCA Version 2 protocol, also called UCA 2, increased the versatility, including the Internet potentialities to all type of services, electricity, gas and water.

Reduce the number of communication protocols existing inside the electrical substation.

Make the integration between devices from different manufacturers easier (interoperability).

☐ Make the access to all the data of the substation easier :

- All the data accessible to all the applications.
- Make the interchange of data between utilities easier.

Agreement between manufacturers and users about the free interchange of information between units. Communications independence regarding the technology.

Communication profiles based on international standards :

IEC / IEEE / ISO / OSI.

I.e. MMS, TCP/IP, Ethernet.

### Benefits of LAN technology :

- Common physical level.
- Wider communication bandwidth.
- Incorporation to the enterprise corporative networks.

□ Free assignment of functions according to different system philosophies.

Ingeteam

Configuration language that makes the engineering and maintenance easier.

Applications and IEDs shares the same :

- Protocol.
- Data format.

Data addresses and name conventions.

 Capacity of data communication through Internet:
 TCP/IP, Ethernet.

\_\_\_\_\_

Introduction

### Interoperability :

- Common bus.
- Same communication protocol.
- Interpretation of the information of other units.
- functions shared between different units.
- Self-descriptive units (plug and play).

### **Change of an element :**

Minimum impact in the rest of the system.

# Model oriented to objects applied to the electrical industry.

#### The models define:

- Common data formats, identifiers and commands for substation.
- Services (i.e file reading/writing).
- Function standard behavior.

### Migration progress :

- Coexistence with existing technology
- Reusing of non-amortized units
- Compatibility with the existing environment
- Interface between the new system and the present ones.
- Necessity of protocol converters (gateways).

#### Manufacturers :

Initial inversion in the development of the new architecture.

Ingeteam

The development of multiple protocols is avoided.

#### Integrating companies :

- Protocol converters are avoided.
- The specific formation is reduced in each protocol.
- Engineering costs are reduced.

#### Final users :

- The costs of the development and adaptation for each installation are reduced.
- The installation and maintenance costs are reduced.
- Reduction of the wiring
- Technological independence regarding the manufacturers.

Contents of the standard IEC 61850

It is NOT simply the definition of a new communication protocol (DNP, 870-5-101, Modbus...)

It is a set of standards
■IEC 61850-1, IEC 61850-2,....IEC61850-10

□It ranges several aspects :

Electrical or quality requirements,

Platforms or communication protocols

Management of systems and projects

Definition of data and service models

and more....

Ingeteam

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

Philosophy of the new architecture and content of the other parts

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

Collection of terms used in the standard

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

Quality requirements (reliability, maintenance, security etc)

**Environmental conditions** 

**Auxiliary services** 

Other standards and specifications

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

Engineering requirements (parameters, tools, documentation)

Life cycle of the system (product versions, discontinuation, support after the discontinuation)

Assurance of the quality (responsibilities, testing unit, type tests, system tests, approval in factory, approval in field)

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

Basic requirements (generals)

Concept introduction : Logical nodes Logical communication links, benefits functions, etc.

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

Language based on XML

Describes the configuration and the parameters of the IEDs, communication configurations, relationships between IEDs, etc.

Main objective : Interchange of data between engineering tools from different manufacturers.

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

#### 7-1 : Principles and models

7-2 : Abstract communication service interface (ASCI)

7-3 : Common data classes

7-4 : Compatible logical node and data object addressing

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

Introduction to section 7

Communication principles and models

#### 7-1 : Principles and models

7-2 : Abstract communication service interface (ASCI)

7-3 : Common data classes

7-4 : Compatible logical node and data object addressing

#### Ingeteam

61850-1 : Introduction and overview **ACSI** description 61850-2 : Glossary Specification of the abstract communication services 61850-3 : General Requirements **Specification of the Model of** 61850-4 : System and project management the structure of the unit database 61850-5 : Communication requirements for functions and device models 7-1 : Principles nodels 61850-6 : Substation automation system configuration description language 7-2 : Abstract communication service interface (ASCI) 61850-7 : Basic communication structure for substation and feeder equipment 7-3 : Common data classes 61850-8 : Specific communication service 7-4 : Compatible logical node and data mapping (SCSM) object addressing

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

Classes of common data and related attributes

7-1 : Principle

**A** models

7-2 : Abstraction service interface (ASCI)

7-3 : Common data classes

7-4 : Compatible logical node and data object addressing

**Contents of the standard** 

Ingeteam

Logical nodes and data classes

7-3 : Commo / data classes

7-4 : Compatible logical node and data

models

Amunication service

7-1 : Principle

7-2 : Abstract

interface (AS

object addressing

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

#### Ingeteam

#### 61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

**Contents of the standard** 

Profile that uses the MMS application protocol and Ethernet to implement the communication between the IED'S (substation bus)

Defines the messages implemented by the abstract services and the models defined in sections 7-2, 7-3 and 7-4

8-1 : Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3

#### Ingeteam

#### 61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

Definition of communications for the process bus: between position and process levels.

Implies the use of electronic transformers with communication capacities.

9-1 : Sampled values over serial unidirectional multidrop point to point link

9-2 :Sampled values over ISO/IEC 8802-3

61850-1 : Introduction and overview

61850-2 : Glossary

61850-3 : General Requirements

61850-4 : System and project management

61850-5 : Communication requirements for functions and device models

61850-6 : Substation automation system configuration description language

61850-7 : Basic communication structure for substation and feeder equipment

61850-8 : Specific communication service mapping (SCSM)

61850-9 : Specific communication service mapping (SCSM)

61850-10 : Conformance testing

The test cases are defined, as well as the testing process, necessary documentation, methodology, etc.

#### Ingeteam

Ingeteam

About 1200 pages.....

○Not all the parts of the standard are necessary for all the users

In section 7-1 (Principles and models, pag 10, table 1):

Recommendations depending on the user's profile

### 2.3 Do I have to read the whole standard?

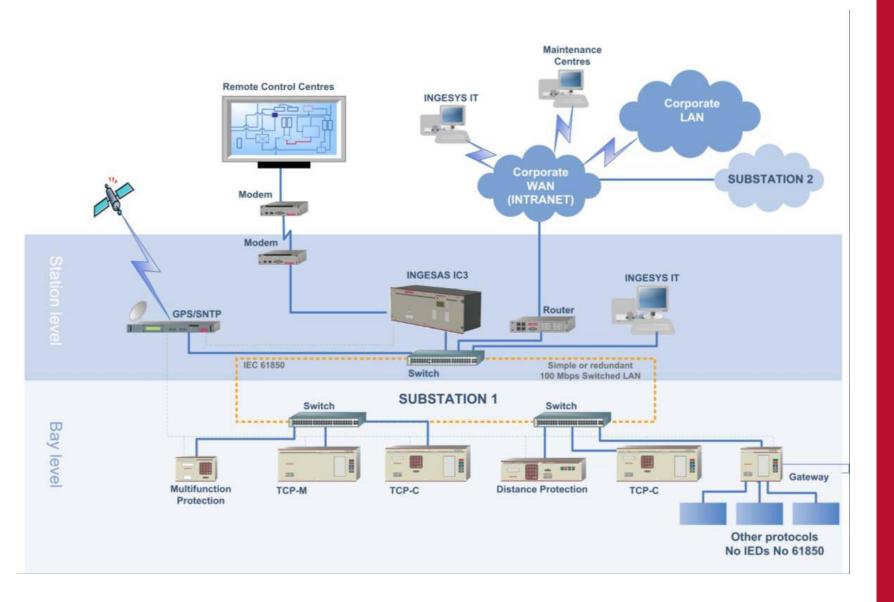
| User       |                                | IEC<br>61850-1<br>(Introduc-<br>tion and<br>overview) | IEC<br>61850-5<br>(Require-<br>ments) | IEC<br>61850-7-1<br>(Principles) | IEC<br>61850-7-4<br>(Logical<br>nodes and<br>data<br>classes) | IEC<br>61850-7-3<br>(Common<br>data<br>classes) | IEC<br>61850-7-2<br>(Inform-<br>ation<br>exchange) | IEC<br>61850-6 <sup>ª</sup><br>(Configur-<br>ation<br>language) | IEC<br>61850-8-x<br>IEC<br>61850-9-x<br>a<br>(Concrete<br>communi-<br>cation<br>stack) |
|------------|--------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Utility    | Manager                        | x                                                     | -                                     | Clause 5                         | -                                                             | -                                               | -                                                  | -                                                               | -                                                                                      |
|            | Engineer                       | x                                                     | x                                     | x                                | x                                                             | x                                               | In<br>extracts                                     | x                                                               | -                                                                                      |
| Vendor     | Application<br>engineer        | x                                                     | x                                     | x                                | x                                                             | x                                               | In<br>extracts                                     | x                                                               | In<br>extracts                                                                         |
|            | Communi-<br>cation<br>engineer | x                                                     | x                                     | x                                |                                                               | -                                               | x                                                  | -                                                               | x                                                                                      |
|            | Product<br>manager             | x                                                     | x                                     | x                                | x                                                             | In<br>extracts                                  | In<br>extracts                                     | In<br>extracts                                                  | -                                                                                      |
|            | Marketing                      | x                                                     | x                                     | Clause 5                         | In<br>extracts                                                | In<br>extracts                                  | In<br>extracts                                     | In<br>extracts                                                  | -                                                                                      |
| Consultant | Application<br>engineer        | x                                                     | x                                     | x                                | x                                                             | x                                               | -                                                  | x                                                               | -                                                                                      |
|            | Communi-<br>cation<br>engineer | x                                                     | -                                     | x                                | -                                                             | -                                               | x                                                  | x                                                               | x                                                                                      |
| All others |                                | x                                                     | x                                     | x                                | - 11                                                          | -                                               | 3 <b>-</b>                                         | 1                                                               | -                                                                                      |

The "x" means that this part of the IEC 61850 series should be read.

The "in extracts" means that extracts of this part of the IEC 61850 series should be read to understand the conceptual approach used.

The "-" means that this part of the IEC 61850 series may be read.

<sup>a</sup> These documents are under consideration.


## Architecture

Ingeteam

3

### **3.1 Architecture**





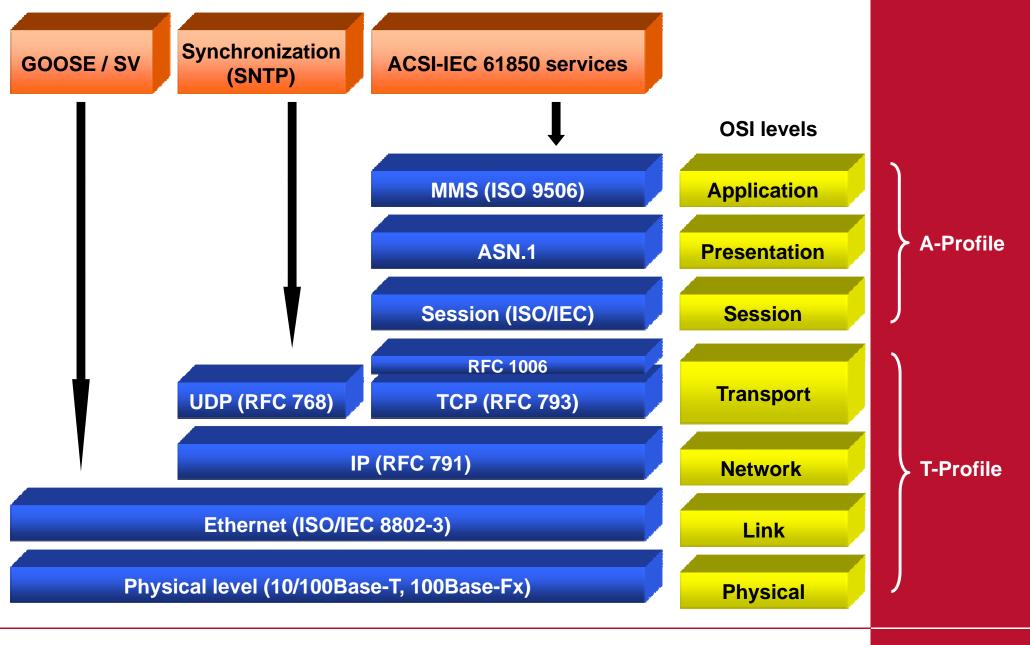
**Architecture** 

#### IEEE 802.3 : most used standard in LAN network

# CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

- Multiple access to a shared medium, a control mechanism is needed. (CSMA/CD)
- Encapsulating of the information (mesh format)
- Addressing (MAC)
- Error detection, etc.
- Operation mode (Half duplex or Full duplex depending on the characteristics of the physical medium, etc.)

#### TCP (Transmission Control Protocol) : Transport level of the OSI model


- The TPC includes two protocols
  - **TCP (Transmission Control Protocol)** 
    - Oriented to the connection
    - Data sending control
  - UDP (User Datagram Protocol)
    - Not oriented to the connection
    - Does not guarantee the data reception

#### □ IP (Internet Protocol) : Network level of the model OSI

- Message fragmentation
- IP addressing : "192.168.100.5"

## 3.4 OSI model

Ingeteam



Architecture

#### ⊟Hub:

- The hub is a multiport repeater, any message received in any of its ports, is repeated (amplified) to the rest of the ports.
- The hub interconnects network segments, creating a single collision domain. They work in the physical layer of the OSI model.

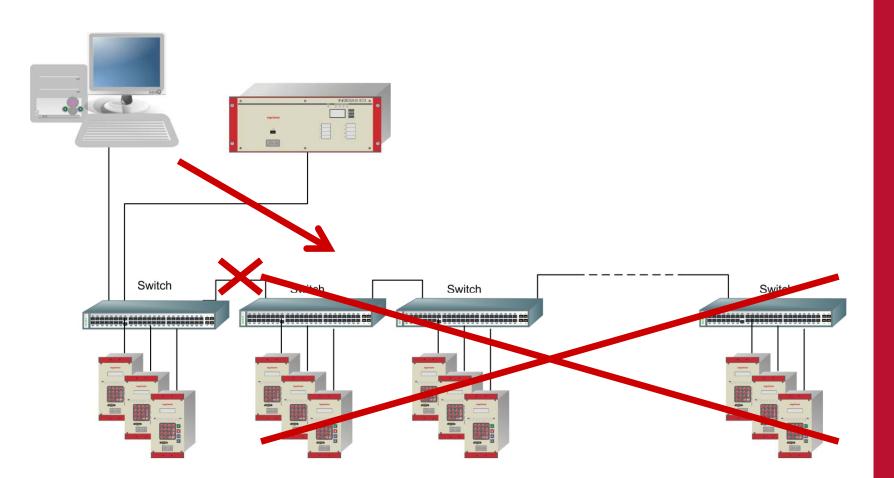
#### Switch

- The switch can be considered as an intelligent Hub. It may interconnect multiple networks (collision domains) of the same or different type.
- The switch works in the link layer of the OSI model.
- Filters the messages depending on their addresses.

#### The IEC 61850 networks must use switches

□The use of the ethernet network and switches allow a great variety of architectures.

**Typical topologies of the network:** 

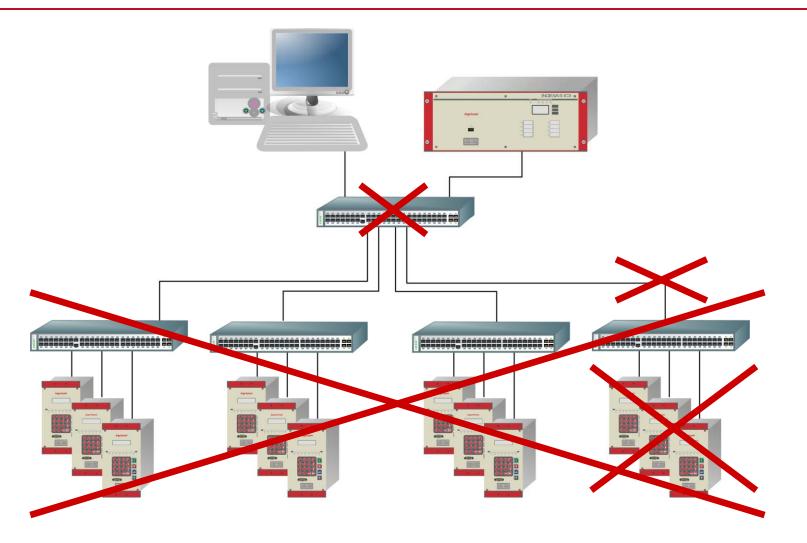

Bus





Ingeteam

## 3.6 Bus architecture

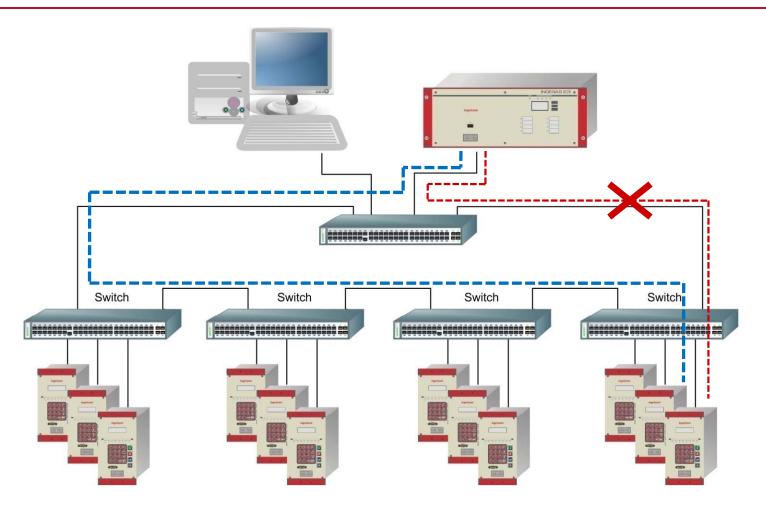



Advantage : Shorter link distance between switches
 Disadvantage: Without redundancy, higher latency times

**Architecture** 

#### Ingeteam

## **3.6 Star architecture**




Advantage : Lower latency (nº of switches between IEDs)
 Disadvantage : Without redundancy, critical head switch

#### Ingeteam

**Architecture** 

## 3.6 Ring architecture



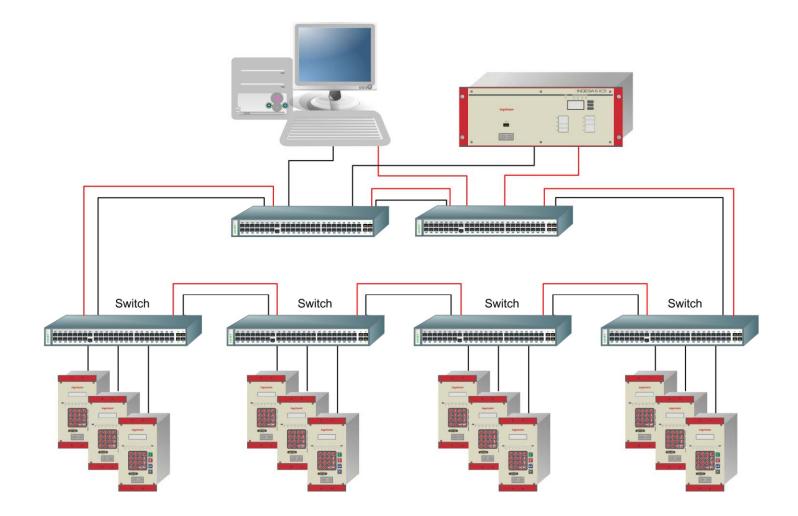
Advantages : Supports a simple failure between switches, shorter link distances between switches

**Disadvantages : Higher latency** 

**Architecture** 

#### Ingeteam

## 3.6 Redundant ring architecture (1)


Switch Switch Switch Switch \*\*\*\*\*\*\*\* 

Ingeteam

Advantages : Redundancy between switches
 Disadvantages : Higher link cost between switches (O.F.)

Architecture

## 3.6 Redundant ring architecture (2)



Advantages : Redundancy between switches + HMI and RTU redundancy + redundancy of the most critical switches
 Disadvantages : Higher cost

Architecture

## Sections 7 and 8 of the standard



**□**Standardized aspects in IEC 61850 – 7, 8 :

- Functions and information visible in the system and how they are named and described (IEC 61850-7-4, -7-3, and -7-2)
- How the functions are accessed and how the information is interchanged (IEC 61850-7-2)
- How the units are connected to the communication networks (IEC 61850-8-x y -9-x).

## Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)

### Client- server model

- Commands
- Data access
- Publisher/Subscriber (reports)
- **File request**

# Peer-to-peer model (communication between equals)

- GOOSE services
- Sampled values services

#### Server

Represents the visible behavior of the unit. The rest of the services are included in it.

Services : ServerDirectory

## Association

Indicates how the units are connected.

Services : Associate, Abort, Release

## Logical device

Represents a group of functions (logical nodes)

Services : LogicalDeviceDirectory

## Logical node

Represents a specific function within the system

Services : LogicalNodeDirectory

#### Data

#### Information of a logical node

Services : GetDataValues, SetDataValues, GetDataDefinition, GetDataDirectory

#### Data set

#### Data groups

Services : GetDataSetValue, SetDataSetValue, CreateDataSet, DeleteDataSet, GetDataSetDirectory

#### Substitution

- Substitution of the real values by some other manually introduced
- Services : Substitute, UnSubstitute

#### Setting group control

- Interchange and edition of setting groups
- Services : ActivateSG, SetSGValues, GetSGValues, GetSGControl

## Reporting and logging

#### Report :

Immediate reports or with a small delay (buffer)

#### Buffered report control:

Services : Report, AckReport, GetReportControlValue, SetReportControlValue

#### Unbuffered report control:

 Services : Report, GetReportControlValue, SetReportControlValue

#### Logging:

- **•** Events chronologically stored.
- Services : GetLogControlValue, SetLogControlValue, QueryLogByTime, GetLogStatusValue, QueryLogByEntry

## **GSE (Generic Substation Event)**

I/O data quick distribution (peer-to-peer communication)

#### There are two classes :

- GOOSE : Generic Object Oriented Substation Event
- GSSE : Generic Substation State Event (bit pairs)

## The information is interchanged through an publisher/subscriber mechanism

Services : GetReference, GetGSEElementNumber, GetGSEControlValue, SetGSEControlValue

#### **Control**

Control operations (commands)

Types :

#### Direct control with normal security :

Operate, TimeActivatedOperate

SBO Control (Select Before Operate) with normal security :

Select, Cancel, Operate, TimeActivatedOperate

#### Direct control with extended security :

Operate, TimeActivatedOperate, CommandTermination

#### SBO Control (Select Before Operate) with extended security :

SelectWithValue, Cancel, Operate, TimeActivatedOperate, CommandTermination

#### Control with Synchrocheck

#### 

Gives the time base of the system

## **FILE transfer**

#### Defines the interchange of great blocks of data

Services :

GetFile, SetFile, DeleteFile, FileDirectory

## □Transmission of sampled values

## Quick and cyclical sample transference Multicast SMVC services:

GetMSMVCValues, SetMSMVCValues

#### Unicast SMVC services:

GetUSMVCValue, SetUSMVCValue, GetNextUSMVC

## GetLogicalDeviceDirectory :

The client requests this service to get a list with the references of all the Logical Nodes of the LD

| Parameter Name   |
|------------------|
| Request          |
| LDReference      |
| Response+        |
| LNReference [3n] |
| Response-        |
| ServiceError     |

## This part of IEC 61850 specifies common attribute types and common data classes related to substation applications.

## □In particular it specifies:

- common data classes for status information,
- common data classes for measured information,
- common data classes for controllable status information,
- common data classes for controllable analogue set point information,
- common data classes for status settings,
- common data classes for analogue settings and
- attribute types used in these common data classes.

Ingeteam

#### Status information

- Single point status (SPS)
- Double point status (DPS)
- Integer status (INS)

•••••

## Measurement information

- Measured value (MV)
- Sampled value (SAV)
- Phase to ground related measured values of a three phase system (WYE)

•••••

#### **Controllable status information**

- Controllable single point (SPC)
- Controllable double point (DPC)
- Controllable integer status (ISC)
- Binary controlled step position information (BSC)
- Integer controlled step position information (ISC)

## **Controllable analogue information**

- Analogue set point (ASP)
- Setting curve (CURVE)

| INS class         |                         |           |             |                             |
|-------------------|-------------------------|-----------|-------------|-----------------------------|
| Attribute<br>Name | Attribute Type          | FC        | TrgOp       | Value/Value Range M/O/C     |
| DataName          | Inherited from Data Cla | ss (see I | EC 61850-   | -2)                         |
| DataAttribut      | te                      |           |             |                             |
|                   |                         |           |             | tate Integer Status (INS)   |
| stVal             | INT32                   | ST        | dchg        |                             |
| q                 | Quality                 | ST        | qchg        | stVal : Data integer        |
| t                 | TimeStamp               | ST        |             |                             |
|                   |                         |           | sul         | stite value                 |
| subEna            | BOOLEAN                 | SV        |             |                             |
| subVal            | INT32                   | SV        |             | q : Data quality            |
| subQ              | Quality                 | SV        |             |                             |
| subID             | VISIBLE STRING64        | SV        |             | It : data timestamp         |
|                   |                         | configu   | iration, de |                             |
| d                 | VISIBLE STRING255       | DC        |             | d : Description (text) of □ |
| dU                | UNICODE STRING255       | DC        |             | the data                    |
| cdcNs             | VISIBLE STRING255       | EX        |             |                             |
| cdcName           | VISIBLE STRING255       | EX        |             |                             |
| dataNs            | VISIBLE STRING255       | EX        |             | AC_DEN_M                    |
| Services          |                         |           |             |                             |
| As defined in     | Table 13                |           |             |                             |

(de IEC 61850-7-3)

| Logical node groups             | <b>Group Indicator</b> |
|---------------------------------|------------------------|
| System Logical Nodes            | L                      |
| Protection functions            | Р                      |
| Protection related functions    | R                      |
| Control                         | С                      |
| Generic References              | G                      |
| Interfacing and Archiving       | Ι                      |
| Automatic Control               | Α                      |
| Metering and Measurement        | Μ                      |
| Switchgear                      | X                      |
| Instrument Transformer          | Т                      |
| Power Transformer               | Υ                      |
| Further power system equipments | ent Z                  |
| Extensions                      | E                      |

## 4.4 IEC 61850-7-4 (Examples of the LNs)

Ingeteam

System Logical Nodes. LN Group: L Logical node zero - LLN0 Physical device information - LPHD Logical Nodes for Protection Functions. LN Group: P Distance protection - PDIS (IEEE: 21) Instantaneous overcurrent - PIOC (IEEE: 50) Time overcurrent - PTOC (IEEE: 51) Logical Nodes for Metering and Measurement LN Group: M Measurement Unit - MMXU Metering - MMTR Logical Nodes for Switchgear Related LN Group: X Circuit breaker - XCBR Circuit Switch - XSWI

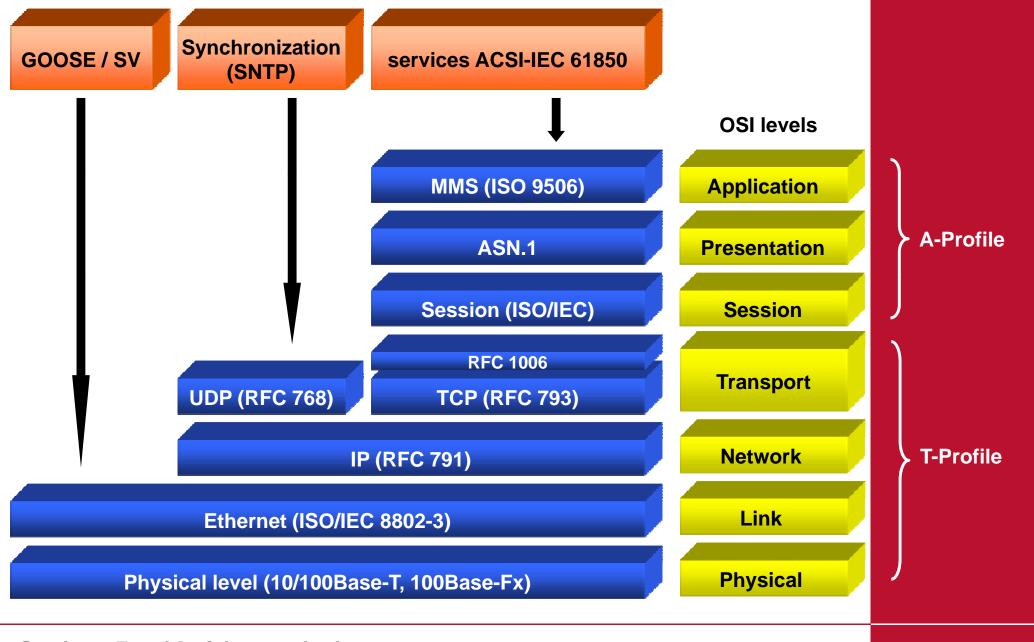
## 4.4 IEC 61850-7-4 (Example of LN)

| GGIO class                            |             |                                                                    |   |     |  |  |
|---------------------------------------|-------------|--------------------------------------------------------------------|---|-----|--|--|
| Attribute Name Attr. Type Explanation |             | Explanation                                                        | Т | M/O |  |  |
| LNName                                |             | Shall be inherited from Logical-Node Class (see IEC 61850-7-2)     |   |     |  |  |
| Data                                  |             |                                                                    |   |     |  |  |
| Common Logical                        | Node Inform | nation                                                             |   |     |  |  |
|                                       |             | LN shall inherit all Mandatory Data from Common Logical Node Class |   | М   |  |  |
| EEHealth                              | INS         | External equipment health (external sensor)                        |   | 0   |  |  |
| EEName                                | DPL         | External equipment name plate                                      |   | 0   |  |  |
| Loc                                   | SPS         | Local operation                                                    |   | 0   |  |  |
| OpCntRs                               | INC         | Resetable operation counter                                        |   | 0   |  |  |
| Measured values                       |             |                                                                    |   |     |  |  |
| AnIn                                  | MV          | Analogue input                                                     |   | 0   |  |  |
| Controls                              | - <u>-</u>  |                                                                    |   |     |  |  |
| SPCSO                                 | SPC         | Single point controllable status output                            |   | 0   |  |  |
| DPCSO                                 | DPC         | Double point controllable status output                            |   | 0   |  |  |
| ISCSO                                 | INC         | Integer status controllable status output                          |   | 0   |  |  |
| Status Informatio                     | n           |                                                                    |   |     |  |  |
| IntIn                                 | INS         | Integer status input                                               |   | 0   |  |  |
| Alm                                   | SPS         | General single alarm                                               |   | 0   |  |  |
| Ind                                   | SPS         | General indication (binary input)                                  |   | 0   |  |  |

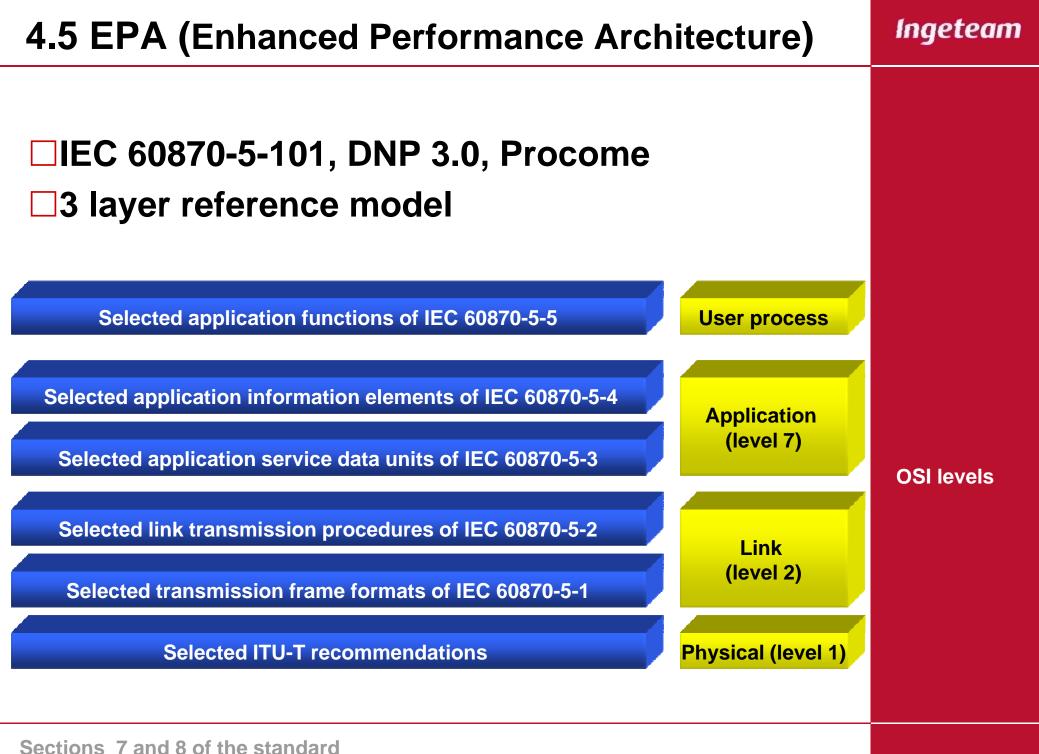
(de IEC 61850-7-4)

## 4.4 IEC 61850-7-4 (Example of LN)

#### Ingeteam


| Attribute<br>Name      | Attribute Type          | FC        | TrgOp     | Value/Value Range     | M/O/C      |
|------------------------|-------------------------|-----------|-----------|-----------------------|------------|
| DataName               | Inherited from Data Cla | ss (see l | EC 61850- | 7-2)                  |            |
| DataAttribut           | te                      |           |           |                       |            |
|                        |                         |           |           | status                |            |
| stVal                  | BOOLEAN                 | ST        | dchg      | TRUE   FALSE          | М          |
| q                      | Quality                 | ST        | qchg      |                       | М          |
| t                      | TimeStamp               | ST        |           |                       | М          |
|                        | 22 22 2<br>33           | X         | sul       | bstitution            | 2.7<br>Xe  |
| subEna                 | BOOLEAN                 | SV        |           |                       | PICS_SUBST |
| subVal                 | BOOLEAN                 | SV        |           | TRUE   FALSE          | PICS_SUBST |
| subQ                   | Quality                 | SV        |           |                       | PICS_SUBST |
| subID                  | VISIBLE STRING64        | SV        |           |                       | ST         |
|                        |                         | configu   | Ira       |                       |            |
| d                      | VISIBLE STRING255       | DC        |           | Cinala Daint Statua / |            |
| dU                     | UNICODE STRING255       | DC        |           | Single Point Status ( | 373)       |
| cdcNs                  | VISIBLE STRING255       | EX        |           |                       | _M         |
| cdcName                | VISIBLE STRING255       | EX        |           | MiLD/GGIO1.Ind.       | stVal 🛛 🖉  |
| dataNs                 | VISIBLE STRING255       | EX        |           |                       | М          |
| Services               |                         |           |           | MiLD/GGIO1.Ind.       | <b>n</b>   |
| As defined in Table 13 |                         |           |           |                       | 4          |
|                        |                         |           |           |                       |            |
|                        |                         |           |           | MiLD/GGIO1.Ind.t      |            |

The SCSM (Specific Communication Service Mapping) describes how to map the concepts, objects and services described in the ACSI, using MMS object concepts and services.


MMS provides the capacity of carrying out the REAL concretion of the abstract models of the ACSI (Abstract Communication Service Interface)

## 4.5 IEC 61850-8-1 (TCP/IP profile)

Ingeteam



Sections 7 and 8 of the standard



Ingeteam

5

## Key concepts

- The standard provides the capacity of representing the IEDs, its functions and the necessary communication capacities.
- This representation is carried out through the ACSI (Abstract Communication Service Interface), which implies ABSTRACT and OBJECT ORIENTED COMMUNICATION MODELS.

Abstract :

- It is aimed at the definition of WHAT is offered by the services.
- It does not care HOW these services are effectuated, so that SCSMs will be specified.

Object Oriented :

- All the meaning entity is modeled as an object with its own characteristics (own parameter).
- The possible interaction between objects are specified.

#### Client – Server :

- Master-Slave concept substituted by Client-Server (multiple clients can get access to the same server).
- Master-Slave :
  - Master send questions (Request)
  - Slave responds (Respond)
- Client / Server :
  - Server gives services and data
  - Several clients may be connected to the server at the same time.

#### Peer-to-peer : Communication between IEDs of the bay level.

Publisher-Subscriber : Communication architecture not oriented to the connection. A "one to many" (i.e. reports).

#### Ingeteam

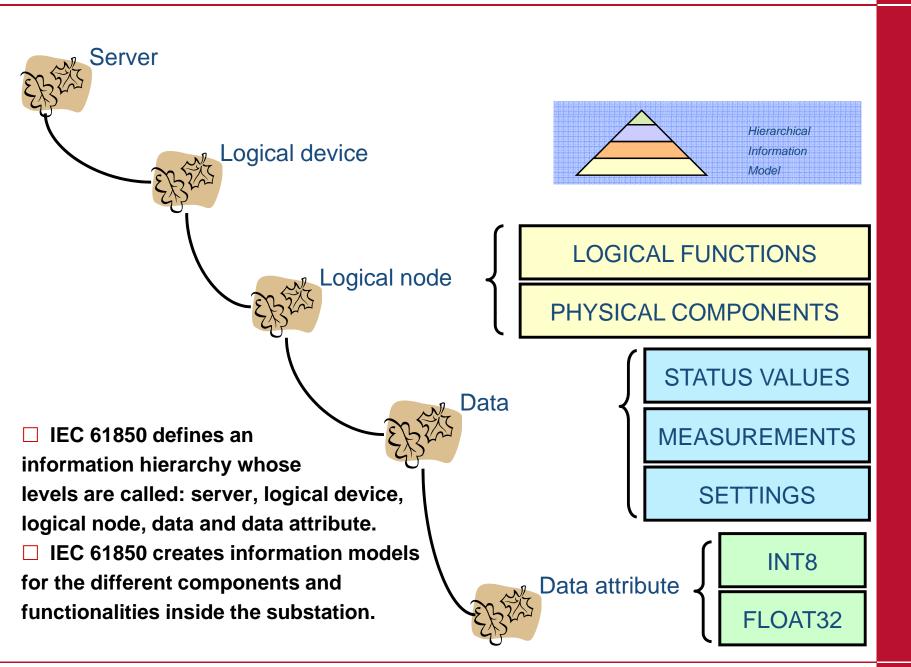
## 5.1 Key concepts (Modelling)

logical device (Bay) IEC 61850-7-2 virtualisation (Virtual World) Services World Hides/encapsulates real Mapping TCP/IP MMS Network XCBR1 Position SCSM IEC 61850-8-1 Mode **Real devices** in any substation IEC 61850-7-4 logical IEC 61850-7-4 node (circuit breaker) data (Position) IEC 61850-6 configuration file 61850 (de IEC 61850-7-1)

**Key concepts** 

#### Ingeteam

## ACSI (Abstract Communication Service Interface)


Virtual interface to an IED that offers abstracted communication services, access to variables, data transference, device control, file transmission etc. Regardless the communication profile used.

## SCSM (Specific Communication Service Mapping)

Assignation of the ACSI over a certain communication profile.

## **Function**

Decomposition of the tasks carried out within the substation



#### Server :

The server represents the visible behavior of a device through the set of data the clients can get access to.

#### Logical Device (LD) :

The logical device represents a group of related functions. Each function is defined through Logical Nodes (LN)

#### Logical Node (LN) :

The logical nodes represent specific functions. It is the smallest part of a function that interchanges data

Data :

Information of the Logical Nodes.

Data attributes :

Information in the data

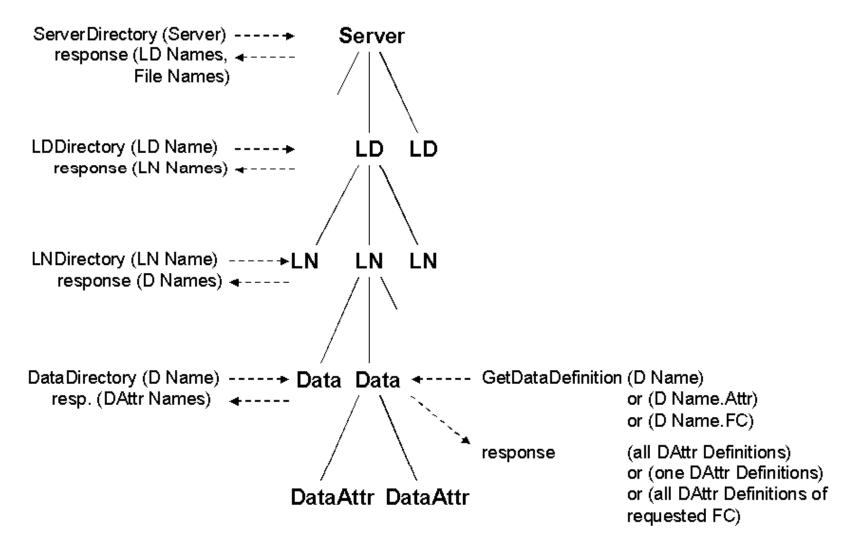
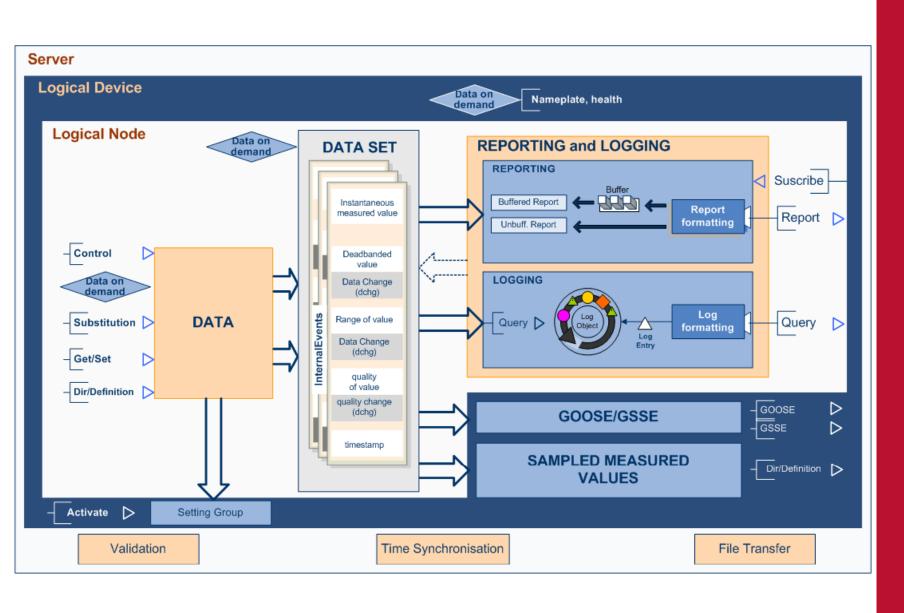
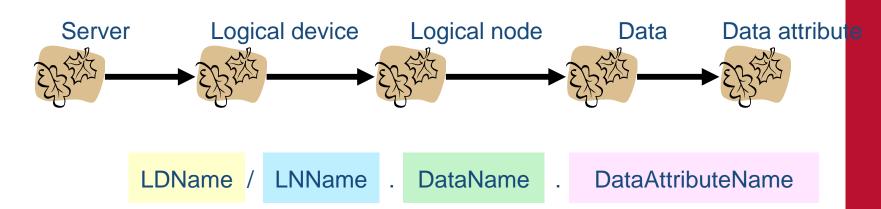
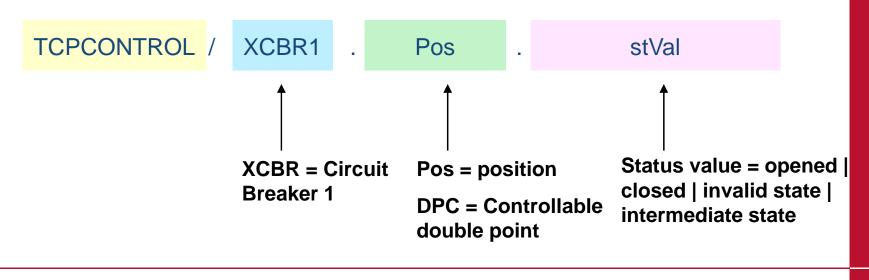
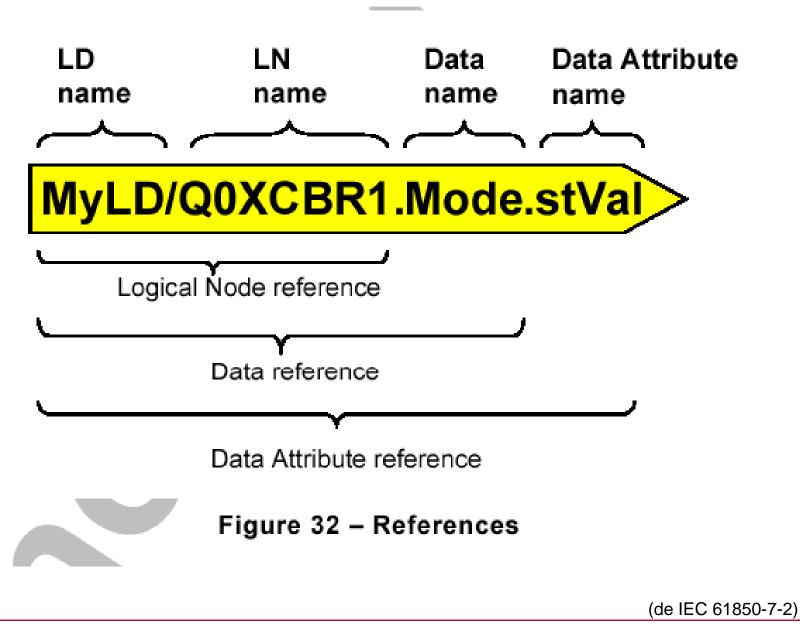




Figure 1 – Object Hierarchy from IEC 61850-7-2 clause 6.2.1


Ingeteam

### 5.2 ACSI : Server


Ingeteam



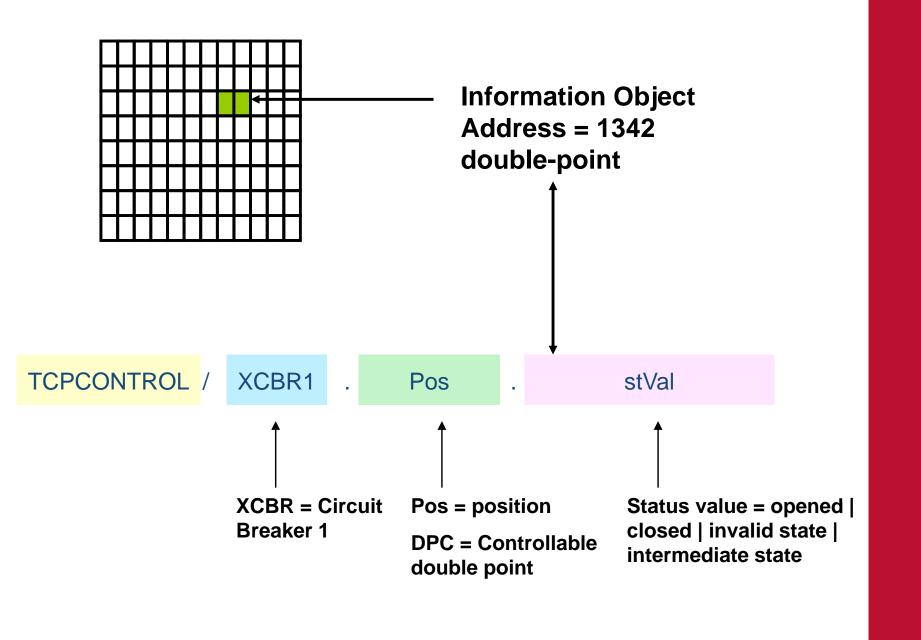

### 5.2 ACSI : References (7-2)



- IEC 61850 uses text references to address information.
- The text reference syntax and semantics are defined in the standard.
- With a text reference, the type and meaning of the information referenced is known.






# Other protocols identify the data through indexes

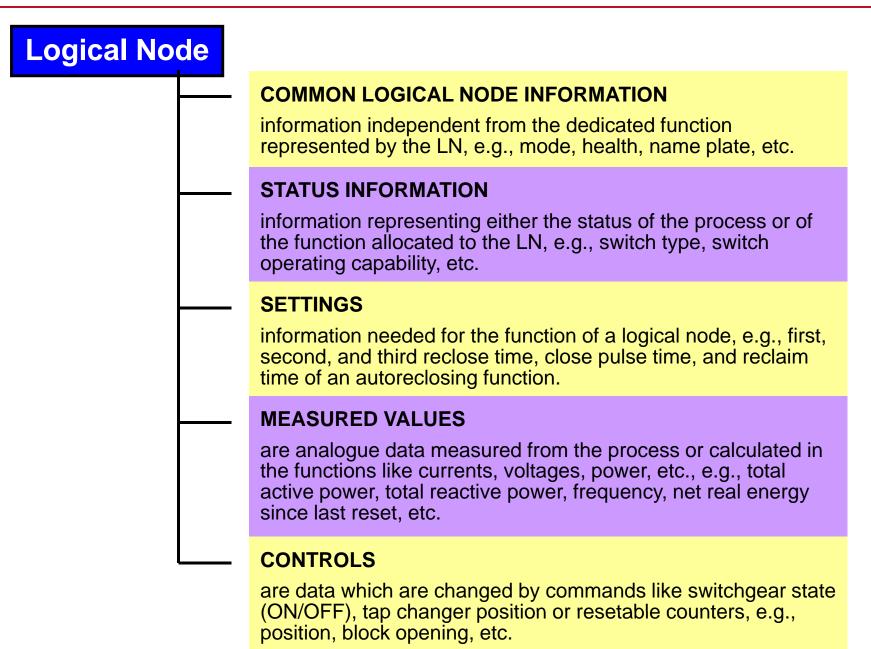
- □I.e. DNP :
  - Object :
    - "1" = Binary Input Static
    - "2" = Binary Input Event
    - .....
  - Variation :
    - "1" = With status
    - "2" = Without status
    - .....

Index : Index within the elements of the same type.

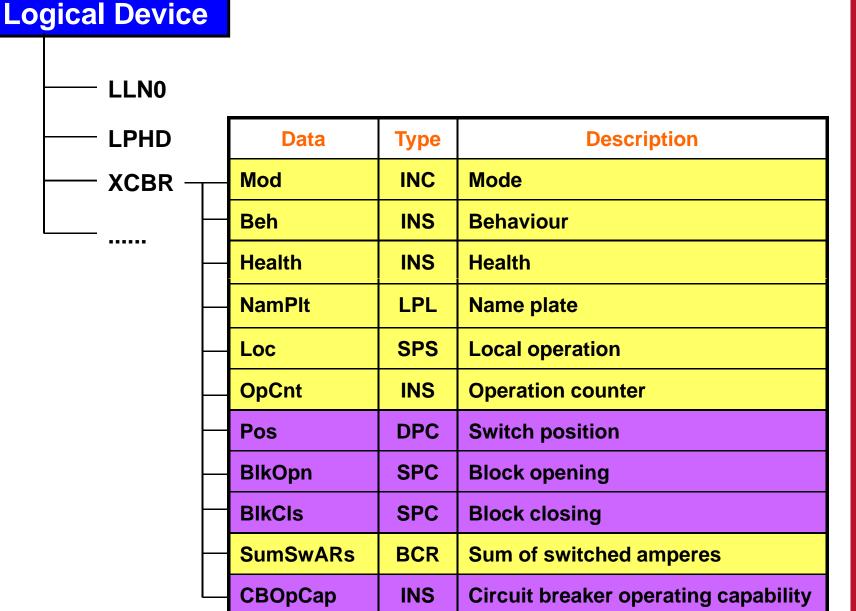
Identification of a data: Obj 2, Var 2, Index 8.

#### **5.2 ACSI : References vs. Indexes**




Ingeteam

The names (references IEC 61850) include the meaning of the data, making the comprehension easier for the user:


Obj 2, Var 2, Index 8.

QA0XCBR1.Pos.stVal (state of a breaker)

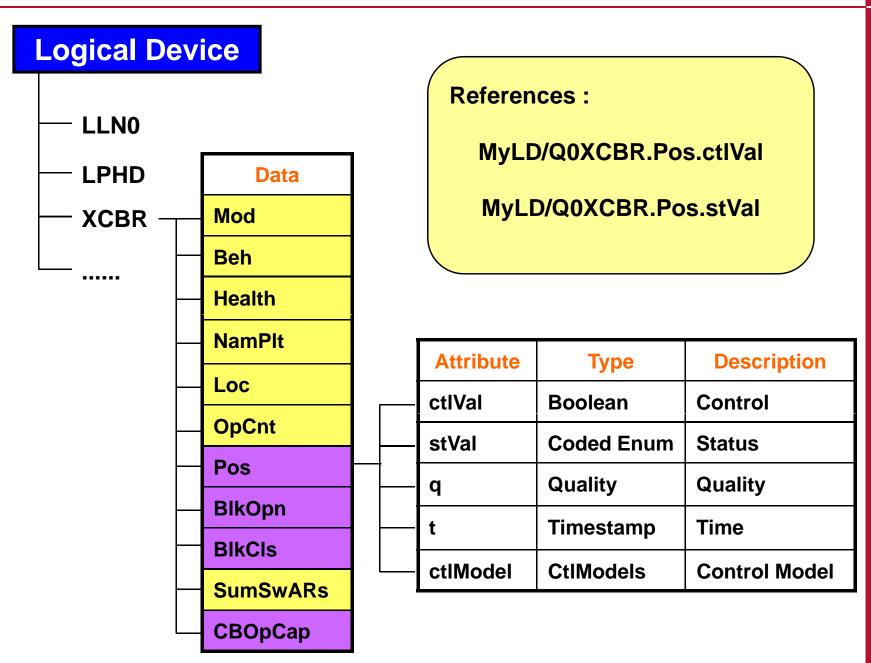
The references are sent through communications so a wider bandwidth is required.



### **5.3 Information categories in LNs**

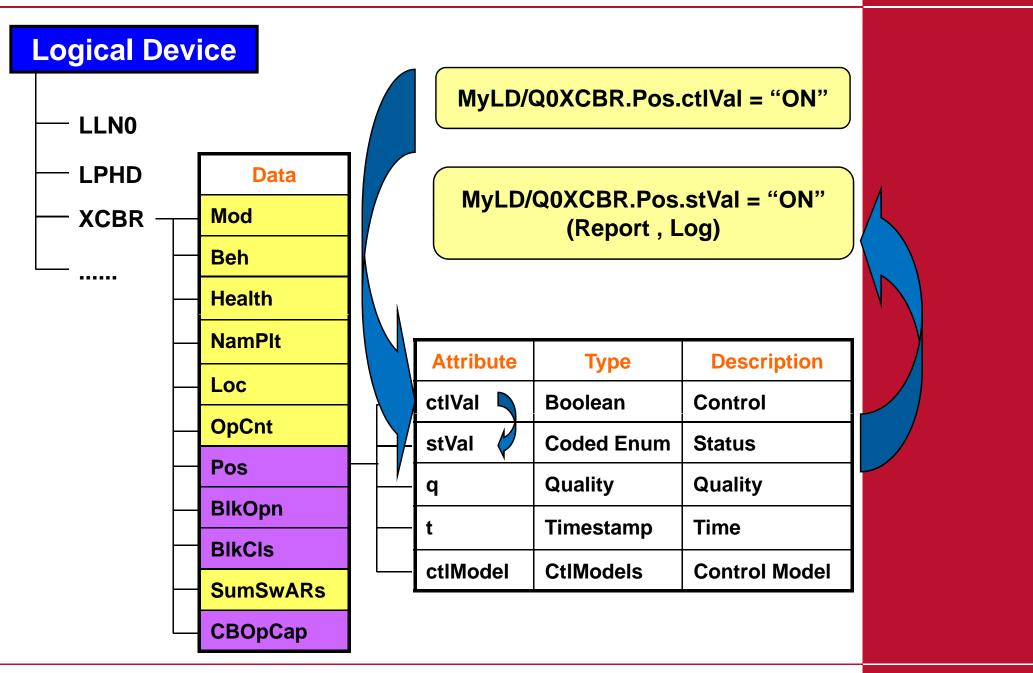


COMMON LOGICAL NODE INFORMATION


CONTROLS

MEASURED VALUES

STATUS INFORMATION


#### Ingeteam

### **5.3 Information categories in LNs**



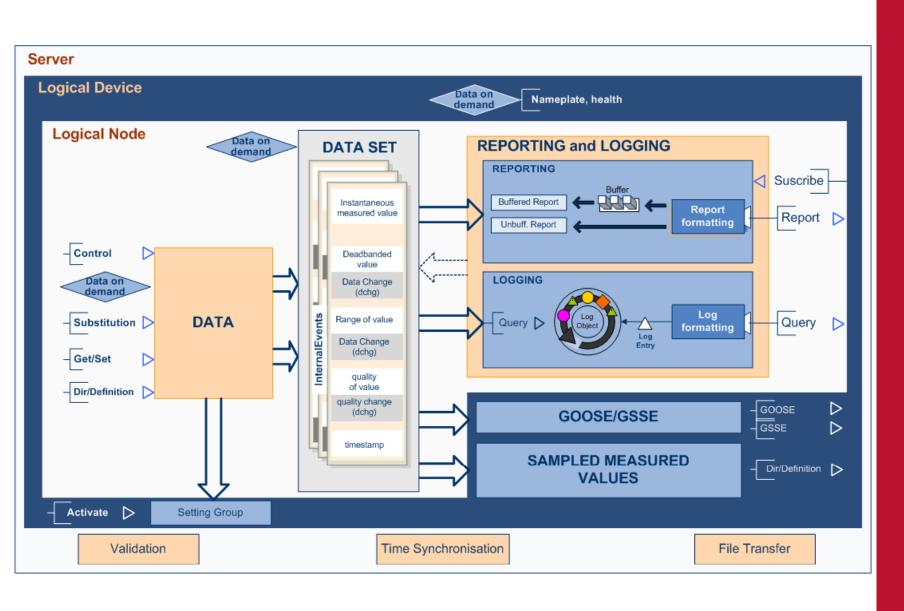
Ingeteam

### **5.3 Information categories in LNs**



### **5.3 DPC Common Data Class**

|   |   |   | -  |  |  |
|---|---|---|----|--|--|
|   | 5 |   | te |  |  |
| 1 |   | 4 |    |  |  |
|   |   | - |    |  |  |


| Attribute<br>Name | Attribute Type          | FC          | TrgOp      | Value/Value Range                         | M/O/C                 |
|-------------------|-------------------------|-------------|------------|-------------------------------------------|-----------------------|
| DataName          | Inherited from Data Cla | ss (see IEC | 61850-7-   | 2)                                        |                       |
| DataAttribut      | e                       |             |            |                                           | - <u>K</u>            |
|                   |                         |             | control a  | and status                                | 20                    |
| ctlVal            | BOOLEAN                 | CO          | AC_CC      |                                           |                       |
| operTm            | TimeStamp               | CO          | M          | M/O data if there                         |                       |
| origin            | Originator              | CO, ST      | ie         |                                           |                       |
| ctlNum            | INT8U                   | CO, ST      | 13         |                                           | AC CO_O               |
| stVal             | CODED ENUM              | ST          | dchg       | intermediate-state   off   on   bad-state | e M                   |
| q                 | Quality                 | ST          | qchg       |                                           | М                     |
| t                 | TimeStamp               | ST          |            |                                           | M                     |
| stSeld            | BOOLEAN                 | ST          | dchg       |                                           | AC_CO_O               |
|                   |                         |             | subs       | Mandatory data —                          | Alian Aliante Aliante |
| subEna            | BOOLEAN                 | SV          |            | Manualory data                            | PICS_SUBST            |
| subVal            | CODED ENUM              | SV          |            | intermediate-state   off   on   bad-state | PICS_SUBST            |
| subQ              | Quality                 | SV          | a          |                                           | PICS_SUBST            |
| subID             | VISIBLE STRING64        | SV          |            |                                           | PICS_SUBST            |
|                   |                         | configura   | tion, desc | ription and extension                     |                       |
| pulseConfig       | PulseConfig             | CF          |            | Optional data                             | AC_CO_0               |
| ctlModel          | CtlModels               | CF          |            |                                           | М                     |
| sboTimeout        | INT32U                  | CF          |            |                                           | AC_CO_0               |
| sboClass          | SboClasses              | CF          |            |                                           | AC_CU_C               |
| d                 | VISIBLE STRING255       | DC          |            | Text                                      | 0                     |
| dU                | UNICODE STRING255       | DC          |            |                                           | 0                     |
| cdcNs             | VISIBLE STRING255       | EX          |            |                                           | AC_DLNDA_M            |
| a da Nama         | VISIBLE STRING255       | EX          |            |                                           | AC_DLNDA_M            |
| cociname          |                         | EV          |            |                                           | AC_DLN_M              |
| cdcName<br>dataNs | VISIBLE STRING255       | EX          | a          |                                           | AC_DEN_M              |

Key concepts

(de IEC 61850-7-3)

### 5.4 IEC 61850-7-2 (Server)

#### Ingeteam

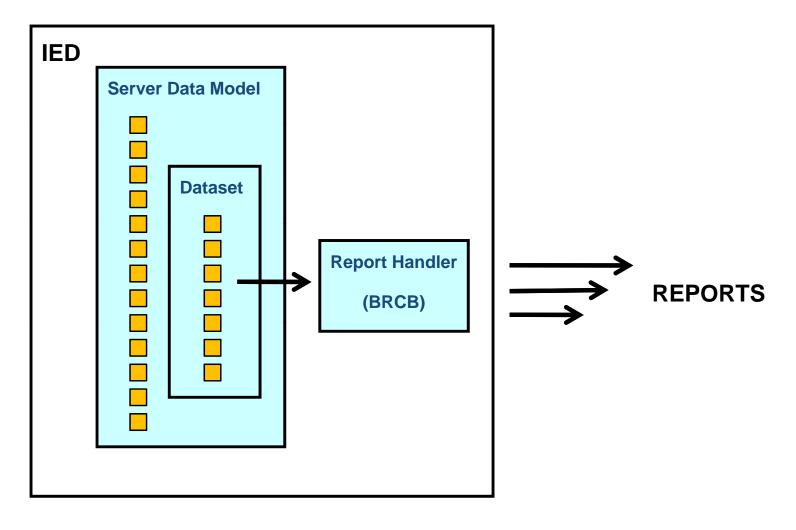


#### **REPORT**:

- Mechanisms for transferring data values caused by well-defined conditions from a logical node to one client
- Time stamped reports serve as an indication to clients under real-time constraints (optionally keeping sequence-of-events to the client)
- Reports are sent only when required (controlled by several attributes) :
  - caused by trigger options data-change, quality-change, and data-update
- Low-frequency integrity scan and client-initiated general interrogation are available

There are two classes of report control defined, each with a slightly different behavior :

#### BUFFERED-REPORT-CONTROL-BLOCK (BRCB) :


- internal events issue immediate sending of reports or buffer the events (to some practical limit) for transmission, such that values of DATA are not lost due to transport flow control constraints or loss of connection.
- BRCB provides the sequence-of-events (SOE) functionality.

#### UNBUFFERED-REPORT-CONTROL-BLOCK (URCB) :

internal events issue immediate sending of reports on a "best efforts" basis. If no association exists, or if the transport data flow is not fast enough to support it, events may be lost.

### 5.5 IEC 61850-7-2 (REPORTS)

#### **Events from a predefined dataset are sent**



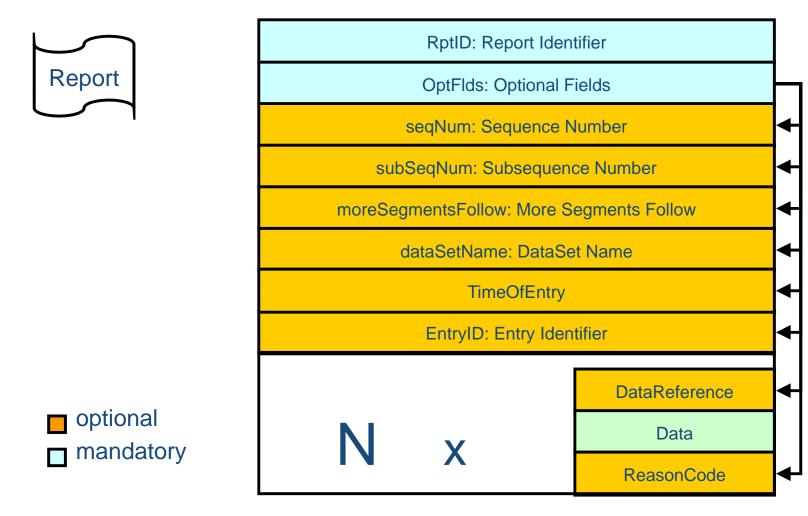
Ingeteam

□**Trigger options (TrgOpt) :** trigger conditions which shall be monitored by the **BRCB** 

Idata-change (dchg)

quality-change (qchg)

Interpote the data of the d


#### Integrity :

In the attribute IntgPd shall indicate the period in milliseconds used for generating an integrity report. An integrity report shall report the values of all members of the related DATA-SET.

#### general-interrogation :

The attribute GI shall indicate the request to start the general-interrogation process. After setting to TRUE, the BRCB shall start the general-interrogation process.

#### □ The Report is a variable structure with optional fields



### 5.5 IEC 61850-7-2 (REPORTS)

#### Ingeteam

|    | Configuration          Report ID:       Dig2         Dataset:       Ingeteam_TCPCTRL1/L         Integrity period:       0         Buffer time:       0         Trigger options       Image         Indata change       Image         Integrity change       Image         Integrity       Image         Image       Image | << ICD<br><<<br>>><br>Purge Buffer<br>Disable RCB<br>GI | Device Info       Monitoring         Report ID:       R00T132kV.BAY2.Ing         Dataset:       Ingeteam_TCPCTRL1/L         Integrity period:       0         Buffer time:       0         Trigger options       Image         data change       Image         data update       Image         integrity       Image         Report optional fields       Sequence number         Timestamp       Timestamp |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT | <ul> <li>Reason for inclusion</li> <li>Data reference</li> <li>Dataset name</li> <li>Entry ID</li> <li>Configuration revision</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | <ul> <li>Reason for inclusion</li> <li>Data reference</li> <li>Dataset name</li> <li>Entry ID</li> <li>Configuration revision</li> </ul>                                                                                                                                                                                                                                                                    |

#### **GSE** :Generic substation event

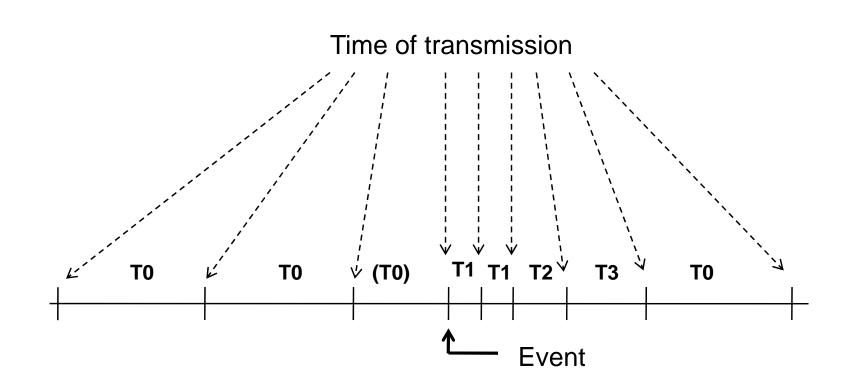
- Possibility for a fast and reliable system-wide distribution of input and output data values
- Based on the multicast application association

GOOSE : generic object oriented substation event

- supports the exchange of a wide range of possible common data organized by a DATA-SET.
- GSSE : generic substation state event
  - provides the capability to convey state change information (bit pairs).

□ Upon power-up the IED send current data (status) or values as the initial GOOSE message.

Shall continue to send the message with a long cycle time, even if no status/value change has occurred.


This ensures that devices that have been activated recently will know the current status values of their peer devices.

Lost of connection can be detected immediately

When a data included in the Goose changes, a message is sent.

### 5.6 IEC 61850-7-2 (GOOSE)

#### Ingeteam

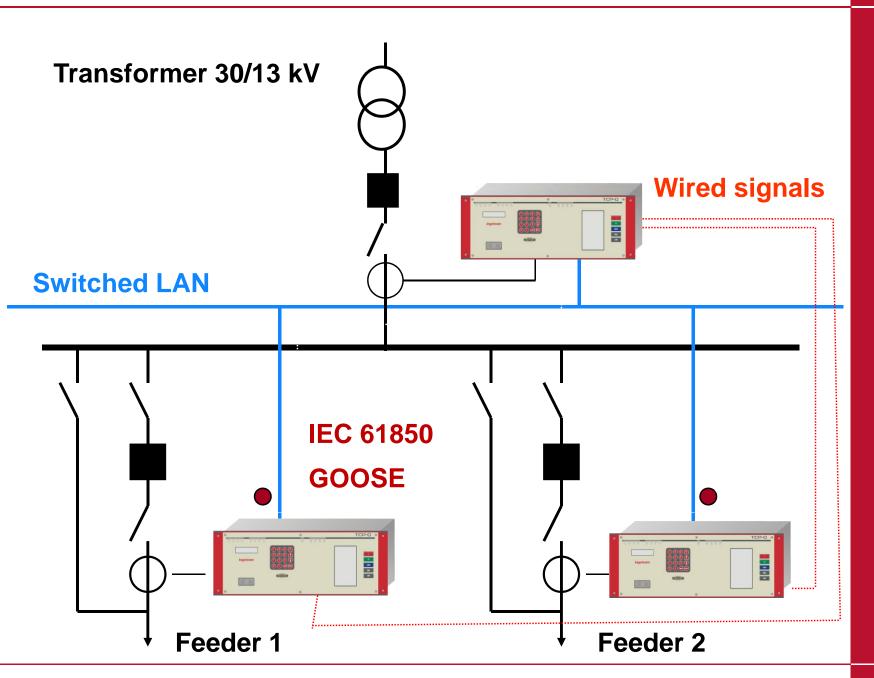


**T0** retransmission in stable conditions (no event for a long time). **(T0)** retransmission in stable conditions may be shortened by an event.

T1 shortest retransmission time after the event.

T2, T3 retransmission times until achieving the stable conditions time.

### 5.6 IEC 61850-7-2 (GOOSE)


#### **GoCB : Goose Control Block**

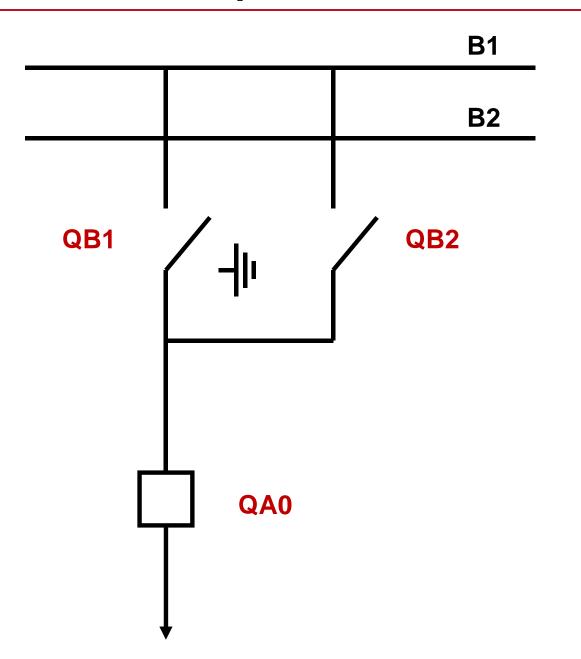
- Parameters to configure a Goose message
  - GoCBName GOOSE control name
  - GoCBRef GOOSE control reference
  - AppID application identification
  - DatSet data set reference
  - ConfRev configuration revision
  - NdsCom needs commissioning

MAC address :

Recommended multicast addresing range

| Service                     | Starting address  | Ending address    |
|-----------------------------|-------------------|-------------------|
| GOOSE                       | 01-0C-CD-01-00-00 | 01-0C-CD-01-01-FF |
| GSSE                        | 01-0C-CD-02-00-00 | 01-0C-CD-02-01-FF |
| Multicast Sampled<br>Values | 01-0C-CD-04-00-00 | 01-0C-CD-04-01-FF |




## Data model

Ingeteam

6

#### 6.1 Data model example

Ingeteam

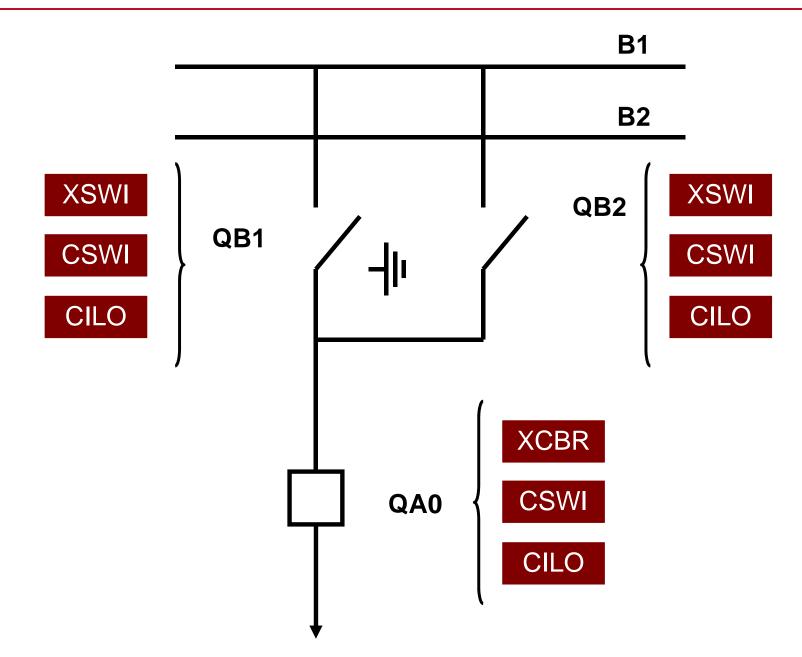


#### **XCBR : Circuit Breaker LN**

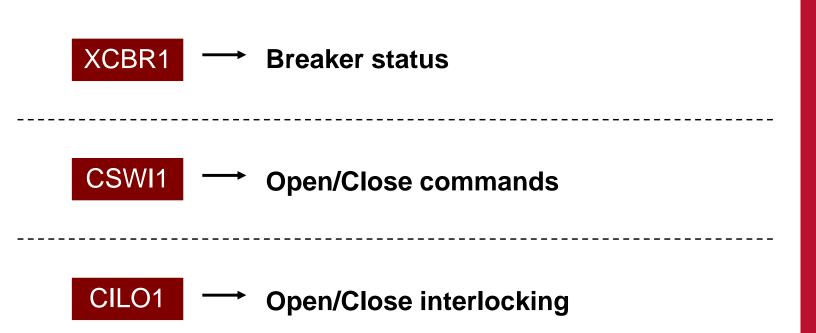
modeling switches with short circuit breaking capability

#### **XSWI : Circuit Breaker LN**

Modeling switches without short circuit breaking capability, for example disconnectors, air break switches, earthing switches, etc.


#### **CSWI : Circuit Breaker LN**

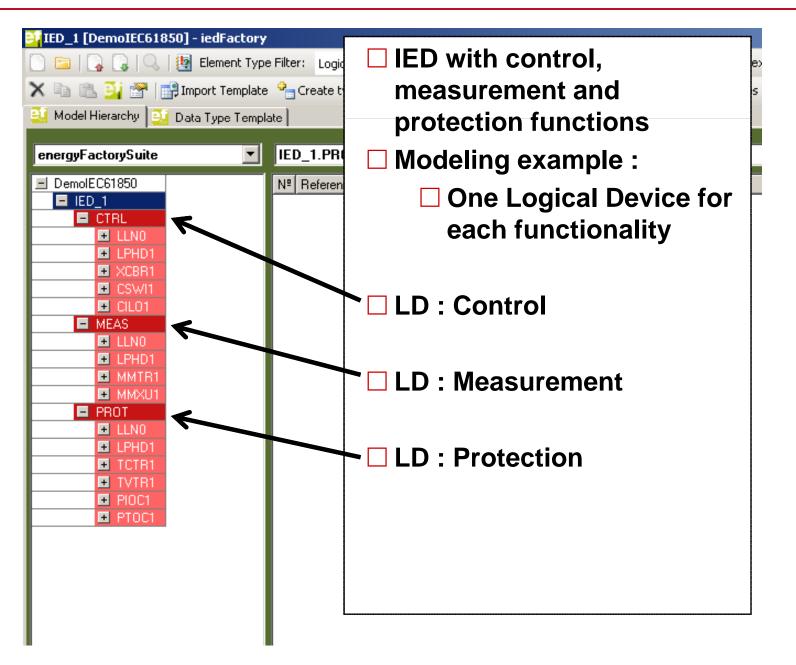
control all switching conditions above process level


#### **CILO : Circuit Breaker LN**

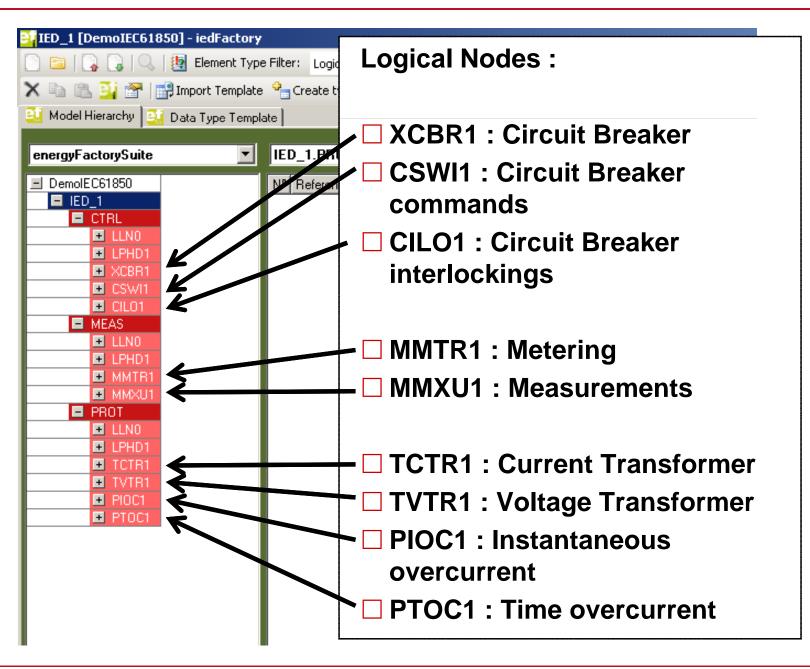
used to "enable" a switching operation if the interlocking conditions are fulfilled

#### 6.1 Data model example




#### **BREAKER MODELING :**




Ingeteam

### 6.1 Data model example

#### Ingeteam



### 6.1 Data model example



Ingeteam

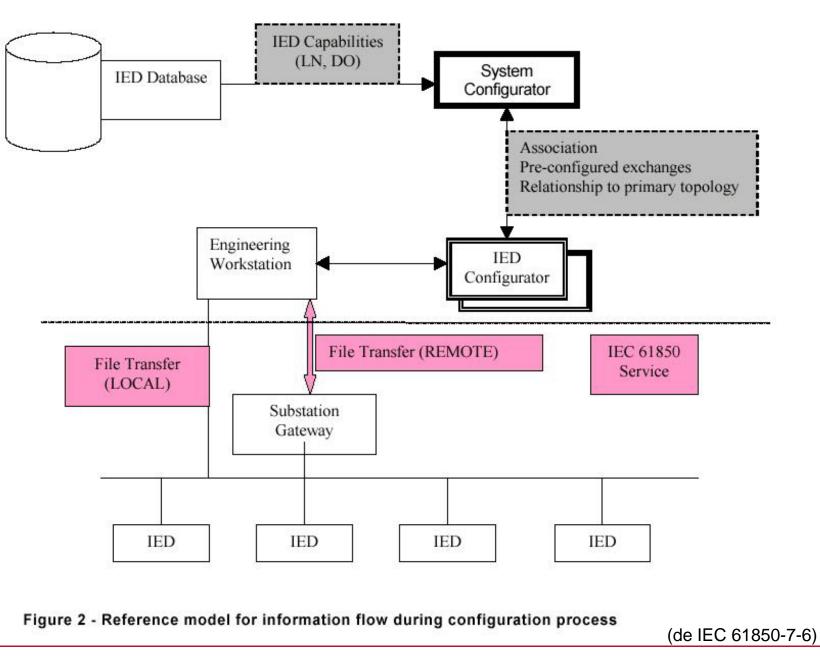
# SCL language

Ingeteam

Every IED, IEC 61850 server, must go with a configuration file (ICD file) that describes its data model and its capacity.

□This language is defined in section 6 of the standard.

**SCL : Substation Configuration Language** 


Based on XML (eXtensible Markup Language)

Ingeteam

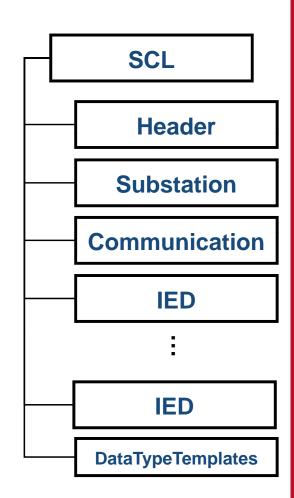
**Defines a format for the configuration files** 

■Not defined as the IED configuration format (although it may be).

## 7.1 SCL language



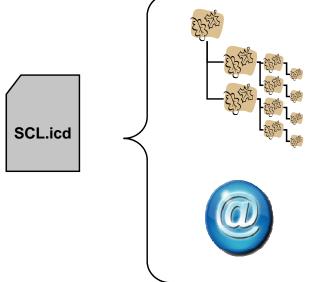
## 7.1 SCL language


#### XML file that describes:

- Substation topology: voltage levels, bays,...
- Communication topology: sub-networks, access-points,...
- IED information model.
- Information model templates.

#### Schema (XSD file) to check the content (structure) of the SCL file.

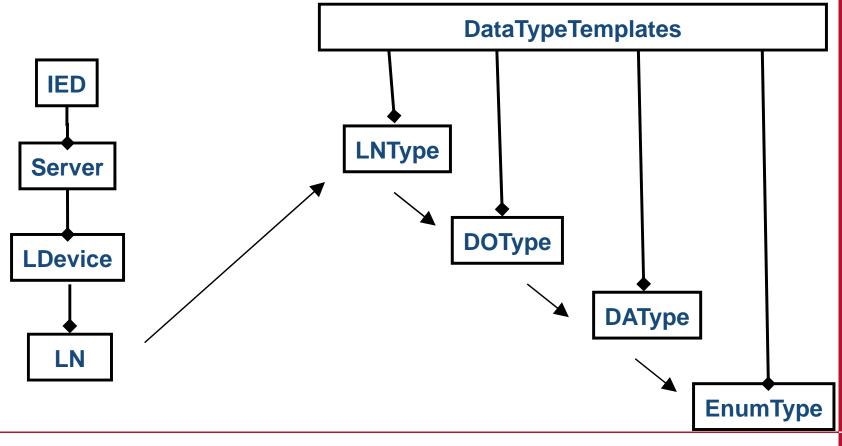
#### **SCL** file types:


- ICD: IED Capabilities Description
- CID: Configured IED Description
- SCD: Substation Configuration Description
- SSD: Substation Specification Description



#### ☐It is described in the ICD or CID file.

#### **These files always include:**


- The information model hierarchy. The content the device will show using the different communication services.
- A communication section which the address used to contact the device.



## 7.2 SCL Information model configuration

- The definition of the information model is based on the creation of templates: data objects and logical node structure is created and included in the DataTypeTemplates section.
- These types shall be instantiated later in the IED section to be included in the device modeled.

Ingeteam



**SCL** language

# □The main sections of a SCL file are the following ones:

Header [1]

Substation [0...n]

Communication [0..1]

IED [0..n]

DataTypeTemplates [0..1]

Ingeteam

SCL language

#### Fields :

#### Header [1]

- History [0...n]
  - revision
  - version
  - when
  - 🗉 who
  - what
  - 🗉 why
- Text [0..1]

## 7.5 Substation section

#### **Elements of the section:**

#### PowerTransformer [0...n]

- LNode [0..n]
- TransformerWinding [0..n]
  - LNode
  - Terminal
  - SubEquipment
  - TapChanger

#### VoltageLevel [1..n]

- Bay [1..n]
  - ConnectivityNode [0..n]
  - ConductingEquipment [0..n]
    - Terminal
    - Subequipment
  - LNode
- Voltage
- Lnode

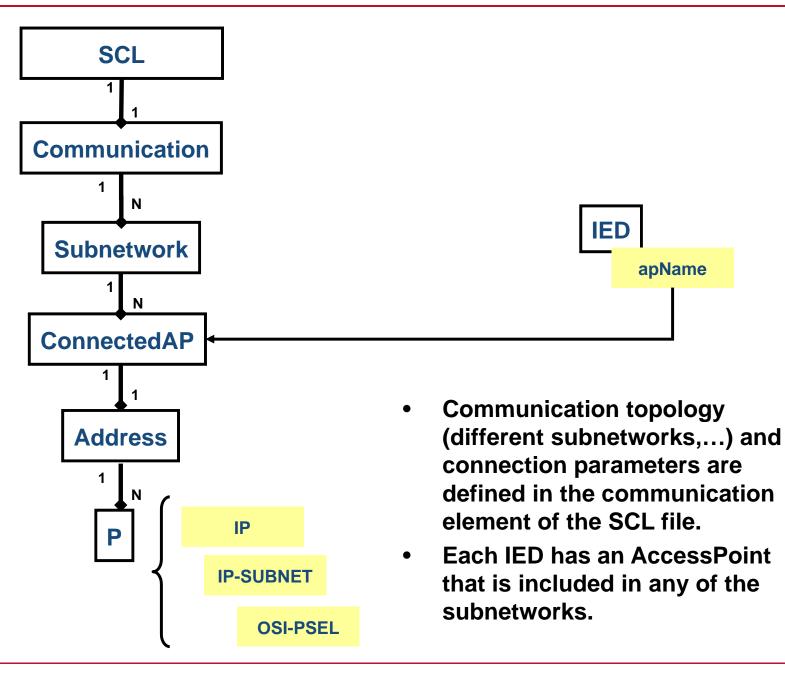
Elements of the section (cont.) :

GeneralEquipment [0...n]

Function [0..n]
 SubFunction [0..n]
 GeneralEquipment [0..n]

LNode

Example : Section of a substation with a bay unit containing a circuit breaker (QA1) and a switch (QB1), electrically connected to node L1. A CSWI-type logical node controls each element.


```
<Substation Ref="">
   <VoltageLevel Ref="E1">
               <Bay Ref="Q1">
                   <Device Ref="QA1" Type="CBR">
                       <LNode Ref="1" LNClass="CSWI"/>
                       <Connection TNodeRef="L1"/>
         </Device>
                   <Device Ref="QB1" Type="DIS">
                       <LNode Ref="2" LNClass="CSWI"/>
                       <Connection TNodeRef="L1"/>
                   </Device>
        </Bay>
  </VoltageLevel>
</Substation>
```

#### □Fields :

#### SubNetwork [1...n]

- BitRate [0..1]
- ConnectedAP [1..n]
  - Address [0..1]
  - PhysConn [0..n]
    - Type (p.ej. FOC)
    - Plug (p.ej. ST)
  - □ GSE [0..n]
    - Address [0..1]
    - MinTime [0..1]
    - MaxTime [0..1]
  - ⊡ SMV [0..n]
    - Address [0..1]

## 7.6 SCL Communication configuration



## 7.6 Communication section: Example

Ingeteam

```
<Communication>
    <SubNetwork name="SubRedIngeteam" type="8-MMS">
         <ConnectedAP apName="IngeteamTD" iedName="SANGKQ01101">
             <Address>
                  <P type="IP">192.168.201.123</P>
                  <P type="SNTP-IP">10.193.0.132</P>
                  <P type="IP-SUBNET">255.255.0.0</P>
                  <P type="IP-GATEWAY">192.168.201.1</P>
                  <P type="OSI-AP-Title">1,3,9999,23</P>
                  <P type="OSI-AE-Qualifier">23</P>
                  <P type="OSI-PSEL">00000001</P>
                  <P type="OSI-SSEL">0001</P>
                  <P type="OSI-TSEL">0001</P>
             </Address>
             <GSE cbName="GooseCB" IdInst="CTRL">
                  <Address>
                       <P type="MAC-Address">01-0C-CD-01-01-01</P>
                       <P type="APPID">0001</P>
                       <P type="VLAN-ID">1</P>
                       <P type="VLAN-PRIORITY">4</P>
                  </Address>
             </GSE>
         </ConnectedAP>
    </SubNetwork>
</Communication>
```

SCL language

### Fields :

- Services
- AccessPoint
  - Server [1]
  - Authentication[1]
  - Ldevice [1..n]
  - LN0 [1]
  - LN [1..n]
  - AccessControl [0...n]
  - Association [0...n]

## 7.7 IED section

```
<IED configVersion="" desc="13 LINEA 1" manufacturer="Ingeteam" name="SANGKQ01I01"
   type="TCP_IH">
  <Services>
   . . . . . . .
  </Services>
  <AccessPoint name="IngeteamTD">
     <Server>
         <Authentication/>
            <LDevice inst="CTRL">
                <LN0 inst="" InClass="LLN0" InType="TCP IHLLN0 T1"/>
                <LN inst="1" InClass="LPHD" InType="TCP IHLPHD T1">
                <LN desc="Generic I/O" inst="1" InClass="GGIO" InType="TCP IHGGIO T1"/>
                <LN desc="Generic I/O" inst="2" InClass="GGIO" InType="TCP IHGGIO T1"/>
            </LDevice>
            <LDevice inst="PROT">
                <LN0 inst="" InClass="LLN0" InType="TCP IHLLN0 T1"/>
                <LN inst="1" InClass="LPHD" InType="TCP_IHLPHD_T1">
                <LN desc="IOC" inst="1" InClass="PIOC" InType="td PIOC1" prefix="">
                <LN desc="IOC" inst="2" InClass="PIOC" InType="td PIOC1" prefix="">
            </LDevice>
     </Server>
  </AccessPoint>
</IED>
```

#### <Services>

<DynAssociation/> <SettingGroups> <SGEdit/> </SettingGroups> <GetDirectory/> <GetDataObjectDefinition/> <DataObjectDirectory/> <GetDataSetValue/> <SetDataSetValue/> <DataSetDirectory/> <ConfDataSet max="5" maxAttributes="100"/> <ReadWrite/> <ConfReportControl max="5"/> <GetCBValues/> <ConfLogControl max="1"/> <ReportSettings bufTime="Dyn" cbName="Conf" datSet="Conf" intgPd="Dyn" optFields="Dyn" rptID="Dyn" trgOps="Dyn"/> <GOOSE max="16"/> <FileHandling/> <ConfLNs fixLnInst="false" fixPrefix="false"/> </Services>

```
<LN desc="IOC" inst="1" InClass="PIOC" InType="td_PIOC1" prefix="">
  <DOI desc="Instantaneous Overcurrent Enabled" name="PIOCEna">
     <DAI name="setVal" sAddr="A,2,21,2,0,0,1">
        <Val sGroup="1">
                              1 < Val >
        <Val sGroup="2"> 1</Val>
        <Val sGroup="3"> 0</Val>
        <Val sGroup="4"> 0</Val>
        <Val sGroup="5"> 1</Val>
        <Val sGroup="6"> 1</Val>
     \langle DAI \rangle
     <DAI name="d">
        <Val> Instantaneous Overcurrent Enabled </Val>
     \langle DAI \rangle
  </DOI>
\langle LN \rangle
```

□Fields :

LNodeType
DO
DOType
DA
SDO
DAType
BDA
BDA
EnumType

EnumVal

<LNodeType id="TCP\_IHLLN0\_T1" iedType="TCP\_IH\_A" InClass="LLN0"> <DO name="Mod" type="TCP\_IHINC\_Mod\_T1"/> <DO name="Beh" type="TCP\_IHINS\_Beh\_T1"/> <DO name="Health" type="TCP\_IHINS\_Health\_T1"/> <DO name="NamPIt" type="TCP\_IHLPL\_T1"/> <DO name="LocKey" type="TCP\_IHSPS\_T1"/> <DO name="RemCtIBIk" type="TCP\_IHSPS\_T1"/> <DO name="LocCtIBeh" type="TCP\_IHSPS\_T1"/> <DO name="LocCtIBeh" type="TCP\_IHSPS\_T1"/> <DO name="Diag" type="TCP\_IHINS\_T1"/> <DO name="Diag" type="TCP\_IHSPC\_T1"/> <DO name="LeDRs" type="TCP\_IHSPC\_T1"/> </LNodeType>

<DOType cdc="SPS" desc="Single point status" id="TCP\_IHSPS\_T1" iedType="TCP\_IH\_A"> <DA bType="BOOLEAN" dchg="true" fc="ST" name="stVal"/> <DA bType="Quality" fc="ST" name="q" qchg="true"/> <DA bType="Timestamp" fc="ST" name="t"/> <DA bType="VisString255" fc="DC" name="d"/> </DOType>

<DAType id="tdRangeConfig" iedType="TCP\_IH\_A"> <BDA name="hhLim" bType="Struct" type="tdAnalogueValue"/> <BDA name="hLim" bType="Struct" type="tdAnalogueValue"/> <BDA name="ILim" bType="Struct" type="tdAnalogueValue"/> <BDA name="IIILim" bType="Struct" type="tdAnalogueValue"/> <BDA name="min" bType="Struct" type="tdAnalogueValue"/> <BDA name="min" bType="Struct" type="tdAnalogueValue"/> <BDA name="max" bType="Struct" type="tdAnalogueValue"/> <BDA name="max" bType="Struct" type="tdAnalogueValue"/> <BDA name="max" bType="Struct" type="tdAnalogueValue"/> <BDA name="max" bType="Struct" type="tdAnalogueValue"/>

```
<DAType id="tdAnalogueValue">
<BDA name="i" bType="INT32"/>
<BDA name="f" bType="FLOAT32"/>
</DAType>
```

#### <EnumType id="ctlModel">

<EnumVal ord="3">

<EnumVal ord="4">

- <EnumVal ord="0"> status-only </EnumVal>
- <EnumVal ord="1"> direct-with-normal-security </EnumVal>
- <EnumVal ord="2"> sbo-with-normal-security </EnumVal>
  - direct-with-enhanced-security </EnumVal>
  - sbo-with-enhanced-security </EnumVal>

#### </EnumType>

| <enumtype <="" id="Health" th=""><th>&gt;</th></enumtype> | >       |
|-----------------------------------------------------------|---------|
| <enumval ord="1"></enumval>                               | Ok      |
| <enumval ord="2"></enumval>                               | Warning |
| <enumval ord="3"></enumval>                               | Alarm   |
|                                                           |         |



## Certification

One of he main activities of the UCA International Users Group is to support the tests

□Activities of the UCAlug :

- Keep the list of approved products
- Keep the list of certification companies authorized by the UCAlug
- Develop, maintain and clarify the "Testing Quality Assurance Program", the approval procedures and the test protocols
- Support to the users and manufacturer in the application of tests
- Act as a final authority in the interpretation of the test procedure (the IEC is the final authority in the specifications)

#### **Certification companies authorized by the UCAlug :**

- I.e. KEMA
  - Arnhem, Holanda
  - AEP/Dolan laboratories, North America

Certified :

The product has not shown to be non-conforming to: IEC 61850-6, 7-1, 7-2, 7-3, 7-4 and 8-1 Communication networks and systems in substations

It is carried according to the IEC 61850-10, with the PICS, MICS, TICS, PIXIT versions indicated by the manufacturer. PICS – Protocol Implementation Conformance Statement
 Indicates the implemented parts of the standard (i.e ACSI services)

MICS – Model Implementation Conformance Statement

**Specifies the implemented model (i.e LNs, Data, attributes, etc.)** 

#### PIXIT – Protocol Implementation eXtra Information for Testing

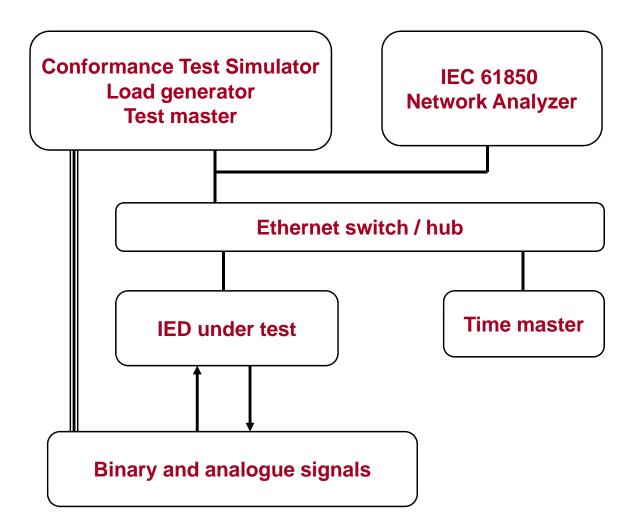
Specific information about the device regarding its communication capacities and that are outside the IEC61850 range (i.e. addresses, supported values, etc.)

TICS – Technical Issues Implementation Conformance Statement

- Modifications after the standard publication
- It is specified which of these modifications have been implemented

 IEC 61850-10 section of the standard specifies the test cases in an abstract way.
 Indicates WHAT has to be tested but not HOW

□ HOW : UCA Users Group Test Procedures


Conformance Blocks :

- Groups of tests
- Detailed in the conformity certificate

#### **Example of the test case, IEC 61850-10 :**

| Test reference<br>RptP1                                                                 | Test purpose<br>GetLogicalNodeDirectory(BRCB) and GetBRCBValues | □ Passed<br>□ Failed |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|--|--|
|                                                                                         |                                                                 | □ Inconclusive       |  |  |
| Ref. Part & Parag. of IEC 61850                                                         |                                                                 |                      |  |  |
| IEC 61850-7-2 Subclause 9.2.2 and 14.2.3.3                                              |                                                                 |                      |  |  |
| IEC 61850-8-1 Subclause 12.3.1 and 17.2.2                                               |                                                                 |                      |  |  |
| Expected result                                                                         |                                                                 |                      |  |  |
| <ol> <li>DUT sends GetLogicalNodeDirectory(BRCB) Response+</li> </ol>                   |                                                                 |                      |  |  |
| 2) DUT sends GetBRCBValues Response+                                                    |                                                                 |                      |  |  |
|                                                                                         |                                                                 |                      |  |  |
| Test description                                                                        |                                                                 |                      |  |  |
| <ol> <li>For each logical node Client requests GetLogicalNodeDirectory(BRCB)</li> </ol> |                                                                 |                      |  |  |
| 2) For each BRCB Client requests GetBRCBValues()                                        |                                                                 |                      |  |  |
|                                                                                         |                                                                 |                      |  |  |
| Commont                                                                                 |                                                                 |                      |  |  |
| Comment                                                                                 |                                                                 |                      |  |  |
|                                                                                         |                                                                 |                      |  |  |
|                                                                                         |                                                                 |                      |  |  |
|                                                                                         |                                                                 |                      |  |  |

**Example of test architecture (KEMA) :** 



Ingeteam

Certification

### 8.1 Certification

#### Ingeteam



T +31 26 356 61 42 F +31 26 351 54 56 sales@kema.com www.kema.com

#### Certification

## 8.1 Certification

| Conformance Block               | Mandatory                                                          | Conditional                        |
|---------------------------------|--------------------------------------------------------------------|------------------------------------|
| 1: Basic Exchange               | Ass1, Ass2, Ass3, AssN2, AssN3,<br>AssN4, AssN5                    | Srv6, Srv7, Srv8, SrvN1e,<br>SrvN3 |
|                                 | Srv1, Srv2, Srv3, Srv4, Srv5,<br>SrvN1abcd, SrvN4                  |                                    |
| 2: Data Sets                    | Dset1, DsetN1ae                                                    |                                    |
| 4: Setting Group<br>Selection   | Sg1, SgN1                                                          |                                    |
| 5: Unbuffered Reporting         | Rp1, Rp2, Rp3, Rp4, Rp7<br>RpN1, RpN2, RpN3, RpN4                  | Rp5, RpN6                          |
| 6: Buffered Reporting           | Br1, Br2, Br3, Br4, Br7, Br8, Br9<br>BrN1, BrN2, BrN3, BrN4, BrN5  | Br5, BrN6                          |
| 9a: GOOSE publish               | Gop2, Gop3, Gop4, Gop7, Gop9                                       | Gop1, Gop6, GopN1                  |
| 9b: GOOSE subscribe             | Gos1, Gos2, Gos3, GosN1, GosN2,<br>GosN3, GosN4, GosN5, GosN6      |                                    |
| 12a: Direct control             | CltN3, CtlN8<br>DOns1, DOns3                                       | Ctl2                               |
| 12b: SBO control                | Ctl3, CltN1, CltN2, CltN4<br>SBOns1, SBOns2                        | Ctl2                               |
| 12c: Enhanced Direct<br>Control | CltN3, CtlN8<br>DOes2, DOes5                                       | Ctl2                               |
| 12d: Enhanced SBO<br>Control    | Ctl3, CltN1, CltN2, CltN3, CltN4,<br>CtlN9, SBOes1, SBOes2, SBOes3 | Ctl2                               |
| 13: Time sync                   | Tm1, Tm2, TmN1                                                     | TmN2                               |
| 14: File transfer               | Ft1, Ft2ab, FtN1ab                                                 | Ft2c, FtN1c                        |



## UCAlug

the UCA International Users Group is a not-forprofit corporation focused on assisting users and vendors in the deployment of standards for realtime applications for several industries with related requirements.

The Users Group does not write standards, however works closely with those bodies that have primary responsibility for the completion of standards (notably IEC TC 57: Power Systems Management and Associated Information Exchange).

### 9.1 UCA International Users Group



## http://www.ucaiug.org



**UCA International Users Group** 

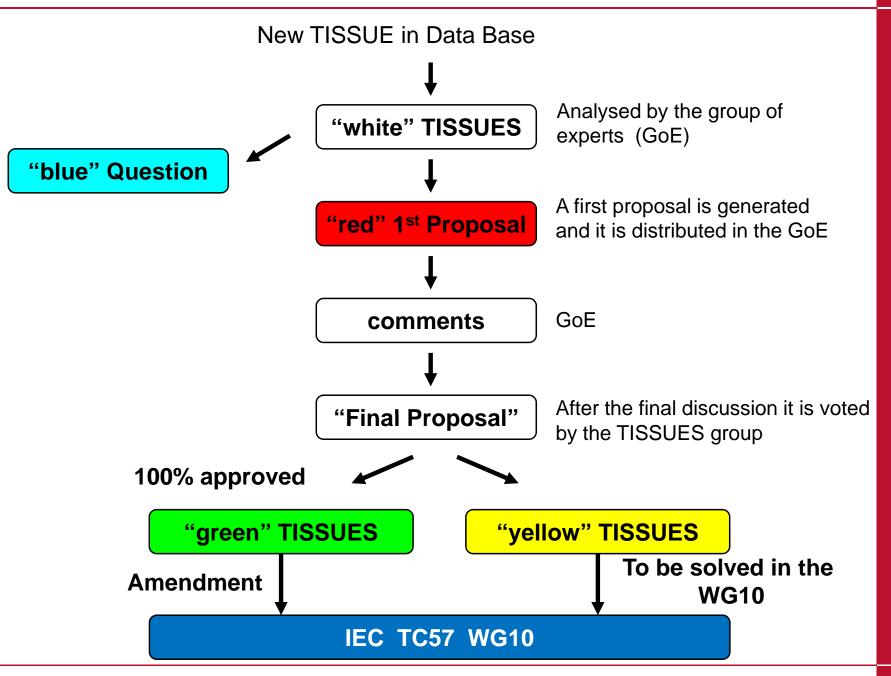
- The mission of the UCAlug is to enable utility integration through the deployment of open standards by providing a forum in which the various stakeholders in the utility industry can work cooperatively together as members of a common organization to:
  - Influence, select, and/or endorse open and public standards appropriate to the utility market based upon the needs of the membership.
  - Specify, develop and/or accredit product/system-testing programs that facilitate the field interoperability of products and systems based upon these standards.
  - Implement educational and promotional activities that increase awareness and deployment of these standards in the utility industry.

#### IEC 61850 standard maintenance

#### What is a "TISSUE"

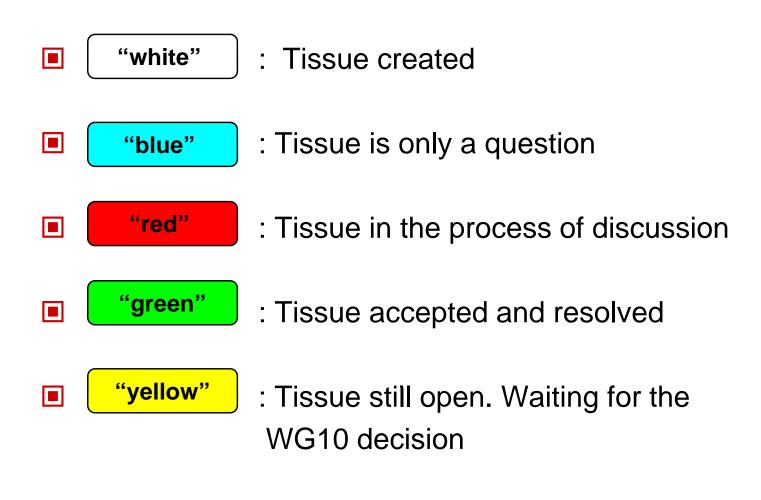
- errors, usually results in modifications
- ambiguities, usually results in clarifications
- ideas, usually results in additions

#### For errors and ambiguities, solutions need to be found within short term


- The TISSUE process defines the rules for that
- TISSUES are handled through a database

🗆 tissues.iec61850.com

- Everybody can enter TISSUES
- Solved TISSUES are also published at the UCA webpage


## 9.2 UCAlug IEC 61850 : Technical Issues

Ingeteam



**UCA International Users Group** 

Possible states of a Tissue :



Ingeteam

## Thank you for your attention